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Announcements

PS 3 —due Wed 11/12
No class that day

Collaboration policy
= Ok to talk to classmates

= Work should be your own
= (Gilligan's island rule — 3 hours)

Web resources
= Pseudocode is fine (but cite it if not from 473 slides)
= Don’t copy (or look at) executable code



Terminology

Marginal Probability
Yy Tig i Cs
} p(X =) = <=

Conditional Probability
Joint Probability
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LX value is given




Probability Recap

Conditional probability P(x|y) = P(z,y)

Product rule

Chain rule

Bayes rule

P(y)

P(x,y) = P(z|y)P(y)

P(X1,Xo,...Xn)

n
— H P(Xi|X17°'°7Xi—1)
=1

P(y|x)

Ply)

P(x|y) =

P(X1)P(X2|X1)P(X3]|X1,X2)...



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
" Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!



Ghostbusters Sensor Model

Values of Pacman’s Sonar Readings

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

Real Distance = 3




Ghostbusters, Revisited

" Let’s say we have two distributions:

" Prior distribution over ghost location: P(G)

= Let’s say this is uniform

.
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
=" R =reading color measured at (1,1)
= E.g. P(R =yellow | G=(1,1)) =0.1
= We can calculate the posterior distribution M
P(G|r) over ghost locations given a reading
0.17

using Bayes’ rule:

P(g|r) o< P(r|g)P(g)

[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Gh sters with Probability




Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X 1Y
Vo,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

= Can use independence as a modeling assumption
= |Independence can be a simplifying assumption
= Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

" |ndependence is like something from CSPs: what?
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True

Independence

P(AAB) = P(A)P(B)
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P1(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Example: Independence?

Py (Ta W) —
T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

P(T)
T P
hot 0.5
cold 0.5
P(W)
W P
sun 0.6
rain 0.4




Example: Independence

= N fair, independent coin flips:

P(X1) P(X>2) P(Xn)
H | 05 H | 05 o H | 05
T 0.5 T 0.5 T 0.5
~ U
S

P(X1, X0, ... Xn)




Conditional Independence




Conditional Independence

Are A & B independent? P(AB) < P(A)

P(A)=(.25+.5)/2
= 375

P(B)=.75

P(A[B)=(.25+.25+.5)/3
=3333

© Daniel S. Weld
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A, B Conditionally Independent Given C

P(A|B,C) =P(A|C) C = stripe free

P(A|-C) =5
P(AB,-C)=.5

15



Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’ t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

* Unconditional (absolute) independence very rare (why?)

» Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z XiI_Y]Z

if and only if:
Vz,y,z : P(x,y|z) = P(z]2)P(y|z)

or, equivalently, if and only if

Va,y,z 1 P(x|z,y) = P(z|2)



What is Conditional Independence?

| am a BIG joint
distribution!

Slay the Basilisk!
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Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= \What about this domain: e

= Fire

= Smoke /ﬁ%

= Alarm




Probability Recap

Conditional probability P(z|y) = Pla,y)
P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,Xo,...Xn) = P(X1)P(X5|X1)P(X3|X1,X2)...
— H P(Xi|X17°"7Xi—1)

1=1

Bayes rule P(zly) = P(?’C;)P(:U)
Yy

X, Y independent if and only if:  Vz,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent givenZ: X 1Y |Z
it and only if: Ve,y,z : P(x,ylz) = P(x|z)P(y|z)



Markov Models

e



Reasoning over Time or Space

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization

= User attention

= Medical monitoring

= Need to introduce time (or space) into our models



Markov Models

O
@‘\&)
" Value of X at a given time is called the state < (0060(0 9@
> g 2
W S\
ol

o
)~~~ o
o

P(X1) P(X3X;—1) =

= Parameters: called transition probabilities or dynamics, specify how the state
evolves over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times
= Same as MDP transition model, but no choice of action




Joint Distribution of a Markov Model

P(X1)  P(XyX¢-1)
= Joint distribution:
P(Xl,Xg,Xg,X4) — P(Xl)P(XQ|X1)P(X3\X2)P(X4\X3)
= More generally:
P(Xl, Xo, ... ,XT) = P(Xl)P(X2|X1)P(X3\X2) . P(XT\XT_l)

T

= P(Xy) | [ P(Xe|Xi-1)

= Questions to be resolved:
= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions
about the joint distribution by using this factorization?



Chain Rule and Markov Models

" From the chain rule, every joint distribution over X;, X5, X3, X4 can be written as:

P(X1, Xa, X3, X4) = P(X1)P(X2|X1)P(X3| X1, Xo) P(X4]| X1, X2, X3)

" Assuming that

Xg Al X1 | XQ and X4 Al Xl,XQ ‘ X3

simplifies to the expression posited on the previous slide:

P(X1, X2, X5, X4) = P(X1)P(X5|X1)P(X3]| X)) P(X4| X5)



Chain Rule and Markov Models

(@) -~

= From the chain rule, every joint distribution over X1, Xo, ..., X7 can be written as:

T
P(X1,Xa,....,X7) = P(X1) | | P(Xe| X1, Xo, .., Xy 1)
t=2
" Assuming that for all t:

Xt AL X17°°'7Xt—2 | Xt—l

simplifies to the expression posited on the earlier slide:

T
P(X1, Xa,..., Xr) = P(X1) | | P(XelXi-1)
t=2



Implied Conditional Independencies

= We assumed: X3 1 X7 | Xy and X, 1L Xi,X, | X3

= Dowealsohave X; 1L X3, X4 | Xy 7
" Yes!

P(Xq, X9, X3, X
u PrOOf: P<X1 | X27X37X4> — ( Sk Lk 4)

P(X5, X3, X,)
P(X1)P(Xy | X1)P(X3 | X2)P(X4 | X3)

> w, P(x1)P(X2 | 21)P(X3 | Xo)P(Xy | X3)
B P(Xl,Xg)
P(X3)
= P(X1 | X2)




Markov Models Recap

Explicit assumption forall t: X: 1L Xi1,..., X2 | X¢q
Consequence, joint distribution can be written as:
P(X1,Xo,...,X7) = P(X1)P(X3|X1)P(X5|Xs) ... P(X7|X1r_1)

= P(Xy) | [ P(X:e|Xi-1)

I itional ind dencies: "
Implied conditional independencies m‘é w@

Past independent of future given the present
e, if t; <ty <ts then: X¢, AL Xg, | X,
Additional explicit assumption: P(X: | Xt—1) is the same for all t




Conditional Independence

= Basic conditional independence:
= Past and future independent of the present
= Each time step only depends on the previous
= This is called the (first order) Markov property

"= Note that the chain is just a (growable) BN

= We can always use generic BN reasoning on it if we
truncate the chain at a fixed length



Example Markov Chain: Weather

W
= States: X ={rain, sun} — TW»

il |

= |nitial distribution: 1.0 sun

= CPTP(X; | X,4): Two new ways of representing the same CPT

Xea | Xe | PX]X,)

0.9
0.3
sun | sun 0.9 un . un
sun | rain 0.1 @ @ v
0.7

rain | sun 0.3

rain

rain | rain 0.7

0.1



Example Markov Chain: Weather

= |nitial distribution: 1.0 sun 0.3 0-9
0.7

0.1

" What is the probability distribution after one step?

P(XQ = Sun) = +
P(X, = sun|Xy = rain)P(Xy1 = rain)

+ 0.3-0.0=0.9



Mini-Forward Algorithm

= Question: What’s P(X) on some day t?

=)0~

=
i ‘? \\‘ I
P(xz1) = known Vﬂ\—\ ﬂl@ {;aﬁ ”')E%g

Next D P?7 days later
E PCEt 1737t

Tt—1




Example Run of Mini-Forward Algorithm

" From initial observation of sun

(00) (o1) (e ) {oss ) ==>{o2s

P(X)) P(X) P(X3) P(Xy) P(X..)

" From initial observation of rain

(10) (o7) {052 ) {oarz ) =>{ozs)

P(Y) P, Py P(X) P(X,.)
= From yet another initial distribution P(X,):

L) = {02

P(Xl) P(XO") [Demo: L13D1,2,3]



Video of Demo Ghostbusters Basic Dynamics




Video of Demo Ghostbusters Circular Dynamics




Video of Demo Ghostbusters Whirlpool Dynamics




Stationary Distributions

" For most chains: = Stationary distribution:
" |Influence of the initial distribution = The distribution we end up with is called
gets less and less over time. the stationary distribution P._ of the
* The distribution we end up in is chain
independent of the initial distribution = |t satisfies

Poo(X) = Poy1(X) = ZP(X’:I:)POO(ZC)




Example: Stationary Distributions

= Question: What’s P(X) at time t = infinity?
()01 --» ~

\ o o0
A o
Py (sun) = P(sun|sun)Ps (sun) + P(sun|rain) P (rain) QD»M
)

Py (rain) = P(rain|sun) P (sun) + P(rain|rain) Py (rain) e

Py (sun) = 0.9P (sun) + 0.3 Py (rain) X, | X | PX]X.,)
Py (rain) = 0.1 Py (sun) + 0.7Px (rain) sun | sun 0.9
( n) _3p (Tazn) sun | rain 0.1
(Tmn) _ 1/ (sun) rain | sun 0.3

Pm(sun) = 3/4 rain | rain 0.7
Also: P._(sun) + Ps(rain) = 1 E Py (rain) = 1/4



Application of Stationary Distribution: Web Link Analysis

= PageRank over a web graph
= Each web page is a state

* |nitial distribution: uniform over pages

= Transitions:

= With prob. ¢, uniform jump to a

random page (dotted lines, not all shown)
= With prob. 1-c, follow a random

outlink (solid lines)

= Stationary distribution
= Will spend more time on highly reachable pages
= E.g. many ways to get to the Acrobat Reader download page
= Somewhat robust to link spam

= Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting
less important over time)




Application of Stationary Distributions: Gibbs Sampling*

" Each joint instantiation over all hidden and query
variables is a state: {X,, ..., X.}=HU Q

= Transitions:
= With probability 1/n resample variable X; according to

POX; | Xq, Xpy v X g Xjy1s oes Xy €1 oo €11)
= Stationary distribution:
= Conditional distribution P(X;, X, , ..., X, |e; ... e)

= Means that when running Gibbs sampling long enough
we get a sample from the desired distribution

= Requires some proof to show this is true!




Next Time: Hidden Markov Models!



