CSE 473: Artificial Intelligence #### Markov Models Daniel S. Weld --- University of Washington #### **Announcements** - PS 3 due Wed 11/12 - No class that day - Collaboration policy - Ok to talk to classmates - Work should be your own - (Gilligan's island rule 3 hours) - Web resources - Pseudocode is fine (but cite it if not from 473 slides) - Don't copy (or look at) executable code ### Terminology ### **Marginal Probability** $$p(X = x_i) = \frac{c_i}{N}.$$ ### **Joint Probability** $$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$ #### **Conditional Probability** $$p(Y=y_j|X=x_i)= rac{n_{ij}}{c_i}$$ X value is given ## **Probability Recap** Conditional probability $$P(x|y) = \frac{P(x,y)}{P(y)}$$ Product rule $$P(x,y) = P(x|y)P(y)$$ Chain rule $$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$ $$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$ Bayes rule $$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$ # Bayes' Rule Two ways to factor a joint distribution over two variables: $$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$ Dividing, we get: $$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$ - Why is this at all helpful? - Lets us build one conditional from its reverse - Often one conditional is tricky but the other one is simple - Foundation of many systems we'll see later (e.g. ASR, MT) In the running for most important AI equation! ### **Ghostbusters Sensor Model** #### Values of Pacman's Sonar Readings # Ghostbusters, Revisited - Let's say we have two distributions: - Prior distribution over ghost location: P(G) - Let's say this is uniform - Sensor reading model: P(R | G) - Given: we know what our sensors do - R = reading color measured at (1,1) - E.g. P(R = yellow | G=(1,1)) = 0.1 - We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule: $P(g|r) \propto P(r|g)P(g)$ # Video of Demo Ghosthusters with Probability # Independence Two variables are independent in a joint distribution if: $$P(X,Y) = P(X)P(Y)$$ $$\forall x, y P(x,y) = P(x)P(y)$$ $$X \perp \!\!\! \perp Y$$ - Says the joint distribution factors into a product of two simple ones - Usually variables aren't independent! - Can use independence as a modeling assumption - Independence can be a simplifying assumption - *Empirical* joint distributions: at best "close" to independent - What could we assume for {Weather, Traffic, Cavity}? • Independence is like something from CSPs: what? # Independence $$P(A \land B) = P(A)P(B)$$ © Daniel S. Weld # Example: Independence? $P_1(T,W)$ | Т | W | Р | |------|------|-----| | hot | sun | 0.4 | | hot | rain | 0.1 | | cold | sun | 0.2 | | cold | rain | 0.3 | P(T) | Т | Р | |------|-----| | hot | 0.5 | | cold | 0.5 | P(W) | W | Р | |------|-----| | sun | 0.6 | | rain | 0.4 | $P_2(T, W) = P(T)P(W)$ | Т | W | Р | |------|------|-----| | hot | sun | 0.3 | | hot | rain | 0.2 | | cold | sun | 0.3 | | cold | rain | 0.2 | # Example: Independence N fair, independent coin flips: | $P(\Lambda_2)$ | | |----------------|-----| | Н | 0.5 | | Т | 0.5 | $$egin{array}{c|c} P(X_n) & & & \\ \hline H & 0.5 & \\ \hline T & 0.5 & \\ \hline \end{array}$$ # **Conditional Independence** # **Conditional Independence** Are A & B independent? P(A|B) < P(A) $$P(A)=(.25+.5)/2$$ = .375 $$P(B) = .75$$ $$P(A|B)=(.25+.25+.5)/3$$ =.3333 © Daniel S. Weld ### A, B Conditionally Independent Given C $$C = stripe free$$ $$P(A|\neg C) = .5$$ $P(A|B,\neg C)=.5$ © Daniel S. Weld ## Conditional Independence - P(Toothache, Cavity, Catch) - If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache: - P(+catch | +toothache, +cavity) = P(+catch | +cavity) - The same independence holds if I don't have a cavity: - P(+catch | +toothache, -cavity) = P(+catch | -cavity) - Catch is conditionally independent of Toothache given Cavity: - P(Catch | Toothache, Cavity) = P(Catch | Cavity) - P(Toothache | Catch , Cavity) = P(Toothache | Cavity) - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) - One can be derived from the other easily # Conditional Independence - Unconditional (absolute) independence very rare (why?) - Conditional independence is our most basic and robust form of knowledge about uncertain environments. - X is conditionally independent of Y given Z $$X \perp \!\!\! \perp Y | Z$$ if and only if: $$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$ or, equivalently, if and only if $$\forall x, y, z : P(x|z, y) = P(x|z)$$ # What is Conditional Independence? Slay the Basilisk! # **Conditional Independence** - What about this domain: - Traffic - Umbrella - Raining # **Conditional Independence** - What about this domain: - Fire - Smoke - Alarm # **Probability Recap** Conditional probability $$P(x|y) = \frac{P(x,y)}{P(y)}$$ Product rule $$P(x,y) = P(x|y)P(y)$$ Chain rule $$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$ $$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$ Bayes rule $$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$ - X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$ - X and Y are conditionally independent given Z: $X \perp \!\!\! \perp Y | Z$ if and only if: $\forall x,y,z: P(x,y|z) = P(x|z)P(y|z)$ ### Markov Models ## Reasoning over Time or Space - Often, we want to reason about a sequence of observations - Speech recognition - Robot localization - User attention - Medical monitoring - Need to introduce time (or space) into our models #### Markov Models Value of X at a given time is called the state - Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities) - Stationarity assumption: transition probabilities the same at all times - Same as MDP transition model, but no choice of action ### Joint Distribution of a Markov Model $$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4)$$ $$P(X_1) \qquad P(X_t|X_{t-1})$$ Joint distribution: $$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$ More generally: $$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$ $$= P(X_1)\prod_{t=1}^{T} P(X_t|X_{t-1})$$ - Questions to be resolved: - Does this indeed define a joint distribution? - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization? #### Chain Rule and Markov Models • From the chain rule, every joint distribution over X_1, X_2, X_3, X_4 can be written as: $$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_1, \underline{X_2})P(X_4|X_1, \underline{X_2}, X_3)$$ Assuming that $$X_3 \perp \!\!\! \perp X_1 \mid X_2$$ and $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$ simplifies to the expression posited on the previous slide: $$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$ #### Chain Rule and Markov Models • From the chain rule, every joint distribution over X_1, X_2, \ldots, X_T can be written as: $$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=2}^{T} P(X_t | X_1, X_2, \dots, X_{t-1})$$ Assuming that for all t: $$X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$$ simplifies to the expression posited on the earlier slide: $$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=2}^{T} P(X_t | X_{t-1})$$ # Implied Conditional Independencies • We assumed: $X_3 \perp \!\!\! \perp X_1 \mid X_2$ and $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$ - Do we also have $X_1 \perp \!\!\! \perp X_3, X_4 \mid X_2$? - Yes! - Proof: $$P(X_1 \mid X_2, X_3, X_4) = \frac{P(X_1, X_2, X_3, X_4)}{P(X_2, X_3, X_4)}$$ $$= \frac{P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}{\sum_{x_1} P(x_1)P(X_2 \mid x_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}$$ $$= \frac{P(X_1, X_2)}{P(X_2)}$$ $$= P(X_1 \mid X_2)$$ ### Markov Models Recap - Explicit assumption for all $t: X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$ - Consequence, joint distribution can be written as: $$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$ $$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$ Implied conditional independencies: Past independent of future given the present i.e., if $$t_1 < t_2 < t_3$$ then: $X_{t_1} \perp \!\!\! \perp X_{t_3} \mid X_{t_2}$ • Additional explicit assumption: $P(X_t \mid X_{t-1})$ is the same for all t # **Conditional Independence** - Basic conditional independence: - Past and future independent of the present - Each time step only depends on the previous - This is called the (first order) Markov property - Note that the chain is just a (growable) BN - We can always use generic BN reasoning on it if we truncate the chain at a fixed length # Example Markov Chain: Weather States: X = {rain, sun} Initial distribution: 1.0 sun | X _{t-1} | X _t | $P(X_{t} X_{t-1})$ | |------------------|----------------|----------------------| | sun | sun | 0.9 | | sun | rain | 0.1 | | rain | sun | 0.3 | | rain | rain | 0.7 | Two new ways of representing the same CPT ## Example Markov Chain: Weather Initial distribution: 1.0 sun What is the probability distribution after one step? $$P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$$ $$0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$ # Mini-Forward Algorithm • Question: What's P(X) on some day t? $$P(x_1) = known$$ $$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$ $$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$ Forward simulation ### **Example Run of Mini-Forward Algorithm** From initial observation of sun From initial observation of rain • From yet another initial distribution $P(X_1)$: $$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \cdots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle$$ $$P(X_1) \qquad P(X_{\infty})$$ [Demo: L13D1,2,3] # Video of Demo Ghostbusters Basic Dynamics # Video of Demo Ghostbusters Circular Dynamics # Video of Demo Ghostbusters Whirlpool Dynamics # **Stationary Distributions** #### For most chains: - Influence of the initial distribution gets less and less over time. - The distribution we end up in is independent of the initial distribution #### Stationary distribution: - The distribution we end up with is called the stationary distribution P_{∞} of the chain - It satisfies $$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$ # **Example: Stationary Distributions** • Question: What's P(X) at time t = infinity? $$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 X_4$$ $$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$ $$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$ $$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$ $$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$ $$P_{\infty}(sun) = 3P_{\infty}(rain)$$ $$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$ $$P_{\infty}(sun) = 3/4$$ $$P_{\infty}(rain) = 1/4$$ | X _{t-1} | X _t | P(X _t X _{t-1}) | |-------------------------|----------------|---------------------------------------| | sun | sun | 0.9 | | sun | rain | 0.1 | | rain | sun | 0.3 | | rain | rain | 0.7 | ### Application of Stationary Distribution: Web Link Analysis #### PageRank over a web graph - Each web page is a state - Initial distribution: uniform over pages - Transitions: - With prob. c, uniform jump to a random page (dotted lines, not all shown) - With prob. 1-c, follow a random outlink (solid lines) #### Stationary distribution - Will spend more time on highly reachable pages - E.g. many ways to get to the Acrobat Reader download page - Somewhat robust to link spam - Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time) ## Application of Stationary Distributions: Gibbs Sampling* ■ Each joint instantiation over all hidden and query variables is a state: $\{X_1, ..., X_n\} = H \cup Q$ #### Transitions: With probability 1/n resample variable X_i according to $$P(X_i \mid X_1, X_2, ..., X_{i-1}, X_{i+1}, ..., X_n, e_1, ..., e_m)$$ #### Stationary distribution: - Conditional distribution $P(X_1, X_2, ..., X_n | e_1, ..., e_m)$ - Means that when running Gibbs sampling long enough we get a sample from the desired distribution - Requires some proof to show this is true! ### Next Time: Hidden Markov Models!