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Topics from 30,000’

= We' re done with Part | Search and Planning!

= Part Il: Probabilistic Reasoning
= Diagnosis
= Speech recognition
= Tracking objects
= Robot mapping
= Genetics
= Error correcting codes
= ... lots more!

= Part lll: Machine Learning



Outline

= Probability

= Random Variables

= Joint and Marginal Distributions

= Conditional Distribution

" Product Rule, Chain Rule, Bayes’ Rule
" Inference

" |ndependence

= You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
= On the ghost: red

= 1 or 2 away: orange

= 3 or 4 away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

[Demo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster — No probability




Uncertainty

" General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about

other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for .
managing our beliefs and knowledge




Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty

= R=Isitraining?

= T=lIsithotorcold?

= D =How long will it take to drive to work?
= L =Whereis the ghost?

= We denote random variables with capital letters

= |ijke variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, x)

= Lin possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

= Associate a probability with each value

= Temperature:

P(T)
T P
hot 0.5
cold | 0.5

= \Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Value Random Variable
P(W)

sun

0.6

rain

0.1

fog

0.3

meteor

0.0

Probability

/ Distribution



Unobserved random variables have distributions

P(T)
T P
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

A probability (lower case value) is a single number

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

P(W = rain) = 0.1

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

Must have: Vg P(X =z)>0 and » P(X=z)=1
X




" A joint distribution over a set of random variables: X1, Xo,...

Joint Distributions

specifies a probability for each assignment (or outcome):

P(X1=z1,Xo=xo,... Xy, = xn)

P(xq,z5,...27n)

= Must obey:

2.

(x1,22,...2n)

P(x1,2>,...2n) >0

P(x1,z0,...2n) = 1

= Size of joint distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

P(T,W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3




Probabilistic Models

Distribution over T,W

A probabilistic model is a joint distribution

over a set of random variables T W P
Probabilistic models: hot >dn 0.4
= (Random) variables with domains hot rain 0.1
= Joint distributions: say whether assignments cold sun 0.2
(called “outcomes”) are likely
= Normalized: sum to 1.0 cold rain 0.3

= |deally: only certain variables directly interact
Constraint over T,W

Constraint satisfaction problems:
= Variables with domains

_|
=

" Constraints: state whether assignments are possible hot sun T
= |deally: only certain variables directly interact hot rain F
cold sun F
cold rain T




Events

= An eventis a set E of outcomes

P(E)Y= )  P(x1...zn)

" From a joint distribution, we can
calculate the probability of any event

" Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




" P(+x, +y) ?

= P(+x)?

" P(-y OR +x) ?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
" Marginalization (summing out): Combine collapsed rows by adding

P(T)
P v)
T W P — hot 0.5
hot sun 0.4 P(t) = Z P(t,s) cold 0.5
hot rain 0.1 5 P(W)
T e
cold rain 0.3 <un 06
P(s) = ; P(t,s) — =

P(X1=uz1) =) P(X1=uz1,Xp=u1)p)
1)



Quiz: Marginal Distributions

P(X,Y)
Y p —— ks
& | 02 P(z) => P(z,y) =
y 0.3 Y P(Y)

—
-y 0.1

P(y) = > P(z,y) S




Conditional Probabilities

= Asimple relation between joint and marginal probabilities
" |n fact, this is taken as the definition of a conditional probability

P(a,b
Palb) = (a,b)
P(b)
P(T, W) i
T W P — — 2
P(W:S|T=c):P(W ;T = c) —O_
hot sun 0.4 P(T = ¢) 0.5
hot rain 0.1 %
cold sun 0.2 =P(W=s,T=c¢c)+P(W=nr,T=c)
cold rain 0.3 =024+03 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

" P(+x | +y) ?

" P(-x | +y) ?

" Py | +x)?



Conditional Distributions

= Conditional distributions are probability distributions over some variables
given fixed values of others

P(W|T)

FConditionaI Distributions Joint Distribution
P(W|T = hot
(W] ) P(T, W)
W
sun 0.8
hot sun 0.4
rain 0.2 )
hot rain 0.1
P(W|T = cold) cold | sun 0.2
cold rain 0.3
sun 0.4

rain 0.6




Conditional Distribs - The Slow Way...

P(T, W)
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(W =s,T = c¢)
P(T = c¢)
. P(W =s,T = c¢)
- PW=sT=c¢c)+P(W=rT=c)

0.2
= = 0.4
0.2+ 0.3

P(W =s|T=c¢) =

—

PW =r,T = c)
P(T = ¢)
B P(W =r,T = c)
C  PW=sT=c)+PW=nr,T=c)

0.3
0.2+4+0.3

P(W =r|T=c) =




Normalization Trick

P(W =s,T =c)
P(T =c¢)
. P(W =s,T =c)
T PW=sT=c)+P(W=rT=c)

P(W =s|T=c) =

0.2+0.3
P(T, W) SELECT the joint NORMALIZE the
probabilities selection _

T W P matching the P(c, W) (make it sum to one) PWI|T = c)
hot sun 0.4 evidence T W P
hot rain 0.1 m— cold | sun 0.2 < sun 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

P(W=nr,T=c)

P(T =c¢)
. P(W=nr,T=c)
C PW=sT=c)+PW=rT=rc)
03
02403

PW=rT=c)=

=0.6



Normalization Trick

P(T, W) SELECT the joint NORMALIZE the

TR 50 PeW)  makenamione  POVIT =0)
hot sun 0.4 evidence T W P
hot | rain | 0.1 — cold | sun |02 — sun | 0.4
cold sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

* Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(zy,20) _  P(xy,22)
P(x2) >y P(x1,72)

P(x1|zs) =



" P(X | Y=-y) ?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection

(make it sum to one)

ﬂ



= Dictionary: “To bring or restore to a[normal condition

N

" Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

Normalize

sun

0.2

rain

0.3

ﬂ
Z=0.5

sun

To Normalize

0.4

rain

0.6

o

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

ﬂ
Z =50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3







Probabilistic Inference

= Probabilistic inference = @ Y
“compute a desired probability from other known | / /
probabilities (e.qg. conditional from joint)” L ‘é

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:

= P(on time | no accidents, 5a.m.) =0.95 C’\\% ‘ A

= P(ontime | no accidents, 5 a.m., raining) = 0.80

= QObserving new evidence causes beliefs to be updated



Probabilistic Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Noisy Sensor readings tell
approx how close a square

is to the ghost

= 1 or 2 away: orange

= Etc.

oo |1 |3 [
o on o Jo o
o os [ [ o
BEEE0

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3




Probabilistic Inference in Ghostbusters

= Aghostisin the grid 5 5
somewhere ? ? |7 : :
= Noisy Sensor readings tell
2 |2 |2 ? ?
approx how close a square : : : -
is to the ghost
2 12 |2 |2 |2
= 1or2away: orange - : : : .

= Etc.

How update the probabilities?



Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
= Evidence variables: Ei...Epy=e1...¢ X1,Xo,...Xn variables, too
= Query* variable:
4 @ All variables P(Q|€1 ¢« v ek)

= Hijdden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

Peo
0.05 —
X 7

0.07
02 |
0.01 q‘——_'a?' AN

——— Z=ZP(Q,61~~ek)
P(Q,e1...ep) = D P(Q,hl...hr,el...eﬁ) q

hi..hy 1
! Xl,XZ--Xn P(Q‘el"'ekz):EP(Qael"'ekz)



Inference by Enumeration

= P(W)? =

summer | hot sun 0.30

summer | hot rain 0.05

summer | cold sun 0.10

- i ?
P(W | Wmter)' summer | cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter | cold sun 0.15
= P(W | winter, hot)? winter | cold rain | 0.20




Inference by Enumeration

= Computational problems?
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(x,y) < ran="77

£ N



The Product Rule

P(y)P(zly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W P D W

m wet sun 0.1 wet sun
sun 0.8 dry sun 0.9 <:> dry sun

rain 0.2 wet rain 0.7 wet rain

dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(z1,x2,...xzn) = || P(ailzy ... 2-1)
7



Bayes Rule




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
" Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P(cffect)
effec

= Example:

= M: meningitis, S: stiff neck
P(+m) = 0.0001

P(+s|+m) =08 [ arPe
P(+s| —m) =10.01_

P(m]| +s) = P(+s|+m)P(+m) P(+s|+m)P(+m) B 0.8 x 0.0001
B P(+s) ~ P(+s| +m)P(+m) + P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999
= Note: posterior probability of meningitis still very small =0.0079

= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes’ Rule

P(D|W)
P(W) D W P

-

<un 08 dry sun 0.9

rain 0.2

= Gjven:

wet rain 0.7

dry rain | 0.3

* What is P(W=rain | dry) ?

P (effect|cause) P(cause)
P(effect)

P(causel|effect) =



Ghostbusters, Revisited

" Let’s say we have two distributions:

" Prior distribution over ghost location: P(G)

= Let’s say this is uniform

.
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
=" R =reading color measured at (1,1)
= E.g. P(R =yellow | G=(1,1)) =0.1
" We can calculate the posterior distribution M
P(G|r) over ghost locations given a reading
0.17

using Bayes’ rule:

P(g|r) o< P(r|g)P(g)

[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Gh sters with Probability




Next Time: Markov Models



