
1

CS 473: Artificial Intelligence
 Reinforcement Learning III

Travis Mandel (filling in for Dan) / University of Washington
[Most slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Logistics

 PS3 – due 11/12

2

4

Reinforcement Learning Recap

 Model-based approach

 Model-free approaches
 TD-learning

 Tabular Q-Learning

 Epsilon-Greedy, Exploration Functions

 TODAY: Approximate Linear Q-Learning

Approximate Q-Learning

Generalizing Across States

 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn
about every single state!
 Too many states to visit them all in training

 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states from

experience

 Generalize that experience to new, similar situations

 This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

2

Feature-Based Representations

 Solution: describe a state using a vector of
features (aka “properties”)
 Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

How to use features?

 Using a feature representation, we can write a q function (or value function) for any
state

𝑉 𝑠 = 𝑔(𝑓1 𝑠 , 𝑓2 𝑠 , … , 𝑓𝑛 𝑠)

𝑄 𝑠, 𝑎 = 𝑔(𝑓1 𝑠 , 𝑓2 𝑠 , … , 𝑓𝑛 𝑠)

How to use features?

 Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

 Advantage: our experience is summed up in a few powerful numbers

 Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

 Formal justification: in a few slides!

Exact Q’s

Approximate Q’s

Example: Pacman Features

𝑄 𝑠, 𝑎 = 𝑤1𝑓𝐷𝑂𝑇 𝑠, 𝑎 + 𝑤2𝑓𝐺𝑆𝑇(𝑠, 𝑎)

𝑓𝐷𝑂𝑇 𝑠, 𝑎 =
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑓𝑜𝑜𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎

𝑓𝐺𝑆𝑇 𝑠, 𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑔ℎ𝑜𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎

𝑓𝐷𝑂𝑇 𝑠, 𝑁𝑂𝑅𝑇𝐻 = 0.5

𝑓𝐺𝑆𝑇 𝑠, 𝑁𝑂𝑅𝑇𝐻 = 1.0

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

3

Video of Demo Approximate Q-Learning -- Pacman Sidebar: Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
0 2 4 6 8 10 12 14 16 18 20

-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help

4

Simple Problem

21

Given: Features of current state

Predict: Will Pacman die on the next step?

Just one feature. See a pattern?

22

 Ghost one step away, pacman dies
 Ghost one step away, pacman dies
 Ghost one step away, pacman dies
 Ghost one step away, pacman dies
 Ghost one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives

Learn: Ghost one step away  pacman dies!

See a pattern?

23

 Ghost one step away, pacman dies
 Ghost one step away, pacman dies
 Ghost one step away, pacman dies
 Ghost one step away, pacman dies
 Ghost one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives
 Ghost more than one step away, pacman lives

Learn: Ghost one step away  pacman dies!

What if we add more features?

24

 Ghost one step away, score 211, pacman dies
 Ghost one step away, score 341, pacman dies
 Ghost one step away, score 231, pacman dies
 Ghost one step away, score 121, pacman dies
 Ghost one step away, score 301, pacman lives
 Ghost more than one step away, score 205, pacman lives
 Ghost more than one step away, score 441, pacman lives
 Ghost more than one step away, score 219, pacman lives
 Ghost more than one step away, score 199, pacman lives
 Ghost more than one step away, score 331, pacman lives
 Ghost more than one step away, score 251, pacman lives

Learn: Ghost one step away AND score is NOT 301  pacman dies!

What if we add more features?

25

 Ghost one step away, score 211, pacman dies
 Ghost one step away, score 341, pacman dies
 Ghost one step away, score 231, pacman dies
 Ghost one step away, score 121, pacman dies
 Ghost one step away, score 301, pacman lives
 Ghost more than one step away, score 205, pacman lives
 Ghost more than one step away, score 441, pacman lives
 Ghost more than one step away, score 219, pacman lives
 Ghost more than one step away, score 199, pacman lives
 Ghost more than one step away, score 331, pacman lives
 Ghost more than one step away, score 251, pacman lives

Learn: Ghost one step away AND score is NOT 301  pacman dies!

Normal Programming now resuming…

26

5

That’s all for Reinforcement Learning!

 Very tough problem: How to perform any task well in an
unknown, noisy environment!

 Traditionally used mostly for robotics, but becoming more widely
used

 Lots of open research areas:

 How to best balance exploration and exploitation?

 How to deal with cases where we don’t know a good state/feature
representation?

31

Reinforcement Learning

Agent

Data (experiences with

environment)

Policy (how to act in

the future)

CS 473: Artificial Intelligence

Probability

Instructor: Travis Mandel --- University of Washingtion
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Next

 Probability

 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 Independence

 You’ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!

Inference in Ghostbusters

 A ghost is in the grid
somewhere

 Sensor readings tell how
close a square is to the
ghost
 On the ghost: red

 1 or 2 away: orange

 3 or 4 away: yellow

 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

 Sensors are noisy, but we know P(Color | Distance)

[Demo: Ghostbuster – no probability (L12D1)]

Video of Demo Ghostbuster – No probability Uncertainty

 General situation:

 Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

 Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

 Model: Agent knows something about how the known
variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

6

Random Variables

 A random variable is some aspect of the world about
which we (may) have uncertainty

 R = Is it raining?

 T = Is it hot or cold?

 D = How long will it take to drive to work?

 L = Where is the ghost?

 We denote random variables with capital letters

 Like variables in a CSP, random variables have domains

 R in {true, false} (often write as {+r, -r})

 T in {hot, cold}

 D in [0, )

 L in possible locations, maybe {(0,0), (0,1), …}

Probability Distributions

 Associate a probability with each value

 Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

 Weather:

 Shorthand notation:

OK if all domain entries are unique

Probability Distributions

 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values

 A probability (lower case value) is a single number

 Must have: and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

Joint Distributions

 A joint distribution over a set of random variables:
 specifies a real number for each assignment (or outcome):

 Must obey:

 Size of distribution if n variables with domain sizes d?

 For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Probabilistic Models

 A probabilistic model is a joint distribution
over a set of random variables

 Probabilistic models:
 (Random) variables with domains
 Assignments are called outcomes
 Joint distributions: say whether assignments

(outcomes) are likely
 Normalized: sum to 1.0
 Ideally: only certain variables directly interact

 Constraint satisfaction problems:

 Variables with domains
 Constraints: state whether assignments are

possible
 Ideally: only certain variables directly interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T

Distribution over T,W

Constraint over T,W

