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CS 473: Artificial Intelligence 
 Reinforcement Learning III 

Travis Mandel (filling in for Dan) / University of Washington 
[Most slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.] 

Logistics 

 PS3 – due 11/12 
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Reinforcement Learning Recap 

 Model-based approach 

 Model-free approaches 
 TD-learning 

 Tabular Q-Learning 

 Epsilon-Greedy, Exploration Functions 

 TODAY: Approximate Linear Q-Learning 

Approximate Q-Learning 

 

Generalizing Across States 

 Basic Q-Learning keeps a table of all q-values 
 

 In realistic situations, we cannot possibly learn 
about every single state! 
 Too many states to visit them all in training 

 Too many states to hold the q-tables in memory 
 

 Instead, we want to generalize: 
 Learn about some small number of training states from 

experience 

 Generalize that experience to new, similar situations 

 This is a fundamental idea in machine learning, and we’ll 
see it over and over again 

 

[demo – RL pacman] 

Example: Pacman 

[Demo: Q-learning – pacman – tiny – watch all (L11D5)] 
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]  
[Demo: Q-learning – pacman – tricky – watch all (L11D7)] 

Let’s say we discover 
through experience 

that this state is bad: 

In naïve q-learning, 
we know nothing 
about this state: 

Or even this one! 
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Feature-Based Representations 

 Solution: describe a state using a vector of 
features (aka “properties”) 
 Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state 

 Example features: 
 Distance to closest ghost 
 Distance to closest dot 
 Number of ghosts 
 1 / (dist to dot)2 

 Is Pacman in a tunnel? (0/1) 
 …… etc. 
 Is it the exact state on this slide? 

 Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food) 

How to use features? 

 Using a feature representation, we can write a q function (or value function) for any 
state  

 

𝑉 𝑠 = 𝑔(𝑓1 𝑠 , 𝑓2 𝑠 , … , 𝑓𝑛 𝑠 ) 
 

𝑄 𝑠, 𝑎 = 𝑔(𝑓1 𝑠 , 𝑓2 𝑠 , … , 𝑓𝑛 𝑠 ) 
 

 

 
 

How to use features? 

 Using a feature representation, we can write a q function (or value function) for any 
state using a few weights: 

 

 

 
 

 Advantage: our experience is summed up in a few powerful numbers 

 

 Disadvantage: states may share features but actually be very different in value! 

Approximate Q-Learning 

 Q-learning with linear Q-functions: 
 
 
 
 
 
 

 Intuitive interpretation: 
 Adjust weights of active features 
 E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features 
 

 Formal justification: in a few slides! 

Exact Q’s 

Approximate Q’s 

Example: Pacman Features 

𝑄 𝑠, 𝑎 =  𝑤1𝑓𝐷𝑂𝑇 𝑠, 𝑎 + 𝑤2𝑓𝐺𝑆𝑇(𝑠, 𝑎) 

𝑓𝐷𝑂𝑇 𝑠, 𝑎 =  
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑓𝑜𝑜𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎
 

𝑓𝐺𝑆𝑇 𝑠, 𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑔ℎ𝑜𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎 

𝑓𝐷𝑂𝑇 𝑠, 𝑁𝑂𝑅𝑇𝐻 = 0.5 

𝑓𝐺𝑆𝑇 𝑠, 𝑁𝑂𝑅𝑇𝐻 =  1.0 

Example: Q-Pacman 

[Demo: approximate Q-
learning pacman (L11D10)] 
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Video of Demo Approximate Q-Learning -- Pacman Sidebar: Q-Learning and Least Squares 
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Linear Approximation: Regression 
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Optimization: Least Squares 
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Approximate q update explained: 

Imagine we had only one point x, with features f(x), target value y, and weights w: 
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Overfitting: Why Limiting Capacity Can Help 
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Simple Problem 

21 

Given: Features of current state 

Predict: Will Pacman die on the next step? 

Just one feature. See a pattern? 
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 Ghost one step away, pacman dies 
 Ghost one step away, pacman dies 
 Ghost one step away, pacman dies 
 Ghost one step away, pacman dies 
 Ghost one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 

 

Learn: Ghost one step away  pacman dies! 

See a pattern? 
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 Ghost one step away, pacman dies 
 Ghost one step away, pacman dies 
 Ghost one step away, pacman dies 
 Ghost one step away, pacman dies 
 Ghost one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 
 Ghost more than one step away, pacman lives 

 

Learn: Ghost one step away  pacman dies! 

What if we add more features? 
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 Ghost one step away, score 211, pacman dies 
 Ghost one step away, score 341, pacman dies 
 Ghost one step away, score 231, pacman dies 
 Ghost one step away, score 121, pacman dies 
 Ghost one step away, score 301, pacman lives 
 Ghost more than one step away, score 205, pacman lives 
 Ghost more than one step away, score 441, pacman lives 
 Ghost more than one step away, score 219, pacman lives 
 Ghost more than one step away, score 199, pacman lives 
 Ghost more than one step away, score 331, pacman lives 
 Ghost more than one step away, score 251, pacman lives 

 

Learn: Ghost one step away AND score is NOT 301  pacman dies! 

What if we add more features? 
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 Ghost one step away, score 211, pacman dies 
 Ghost one step away, score 341, pacman dies 
 Ghost one step away, score 231, pacman dies 
 Ghost one step away, score 121, pacman dies 
 Ghost one step away, score 301, pacman lives 
 Ghost more than one step away, score 205, pacman lives 
 Ghost more than one step away, score 441, pacman lives 
 Ghost more than one step away, score 219, pacman lives 
 Ghost more than one step away, score 199, pacman lives 
 Ghost more than one step away, score 331, pacman lives 
 Ghost more than one step away, score 251, pacman lives 

 

Learn: Ghost one step away AND score is NOT 301  pacman dies! 

Normal Programming now resuming… 
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That’s all for Reinforcement Learning! 

 

 

 Very tough problem: How to perform any task well in an 
unknown, noisy environment! 

 Traditionally used mostly for robotics, but becoming more widely 
used 

 Lots of open research areas: 

 How to best balance exploration and exploitation? 

 How to deal with cases where we don’t know a good state/feature 
representation?  
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Reinforcement Learning 

Agent 

Data (experiences with 

environment) 

Policy (how to act in 

the future) 

CS 473: Artificial Intelligence 
 

Probability 

Instructor: Travis Mandel --- University of Washingtion 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.] 

Next 

 Probability 
 

 Random Variables 

 Joint and Marginal Distributions 

 Conditional Distribution 

 Product Rule, Chain Rule, Bayes’ Rule 

 Inference 

 Independence 

 

 You’ll need all this stuff A LOT for the 
next few weeks, so make sure you go 
over it now! 

 

 

Inference in Ghostbusters 

 A ghost is in the grid 
somewhere 

 Sensor readings tell how 
close a square is to the 
ghost 
 On the ghost: red 

 1 or 2 away: orange 

 3 or 4 away: yellow 

 5+ away: green 

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3) 

0.05 0.15 0.5 0.3 

  Sensors are noisy, but we know P(Color | Distance) 

 

[Demo: Ghostbuster – no probability (L12D1) ] 

Video of Demo Ghostbuster – No probability Uncertainty 

 General situation: 
 

 Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor 
readings or symptoms) 

 

 Unobserved variables: Agent needs to reason about 
other aspects (e.g. where an object is or what disease is 
present) 

 

 Model: Agent knows something about how the known 
variables relate to the unknown variables 

 
 

 Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge 
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Random Variables 

 A random variable is some aspect of the world about 
which we (may) have uncertainty 

 

 R = Is it raining? 

 T = Is it hot or cold? 

 D = How long will it take to drive to work? 

 L = Where is the ghost? 
 

 We denote random variables with capital letters 
 

 Like variables in a CSP, random variables have domains 
 

 R in {true, false}   (often write as {+r, -r}) 

 T in {hot, cold} 

 D in [0, ) 

 L in possible locations, maybe {(0,0), (0,1), …} 

Probability Distributions 

 Associate a probability with each value 

 
 Temperature: 

 

 

 

 
 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.1 

fog 0.3 

meteor 0.0 

 

 
 Weather:  

 

 

 

 

 
 

 Shorthand notation: 

 

 

 

 

 

OK if all domain entries are unique 

 

 

Probability Distributions 

 Unobserved random variables have distributions 

 

 

 

 

 
 

 A distribution is a TABLE of probabilities of values 
 

 A probability (lower case value) is a single number 
 

 

 Must have:                                                 and 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.1 

fog 0.3 

meteor 0.0 

Joint Distributions 

 A joint distribution over a set of random variables: 
 specifies a real number for each assignment (or outcome):  

 
 

 
 
 

 

 Must obey: 

 
 
 

 

 
 Size of distribution if n variables with domain sizes d? 

 

 For all but the smallest distributions, impractical to write out! 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

Probabilistic Models 

 A probabilistic model is a joint distribution 
over a set of random variables 

 

 Probabilistic models: 
 (Random) variables with domains  
 Assignments are called outcomes 
 Joint distributions: say whether assignments 

(outcomes) are likely 
 Normalized: sum to 1.0 
 Ideally: only certain variables directly interact 

 
 Constraint satisfaction problems: 

 Variables with domains 
 Constraints: state whether assignments are 

possible 
 Ideally: only certain variables directly interact 

 
 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T W P 

hot sun T 

hot rain F 

cold sun F 

cold rain T 

Distribution over T,W 

Constraint over T,W 


