CS 473: Artificial Intelligence

Reinforcement Learning I

Daniel Weld / University of Washington

[Most slides were taken from Dan Klein and Pieter Abbeel / C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Logistics

= PS3 — MDPs & Reinforcement Learning — due 11/12
= No Friday Office hours for Dan today

Reinforcement Learning

———7 WATCH WHAT | N @2003
CAN MAKE PAVLOV DO. \-- 1 -2/ 7im, % L e L)
O PG SOON AS | DROOL, ey Il o
HE'LL SMILE AND WRITE |-~ -0 - oo
IN HIS LITTLE Book. /. .-5 7 " Y

Q

e,
&

>
"J‘-H‘

.
IR

s
S
&

Parallel Parking

“Few driving tasks are as intimidating as parallel parking....

http://www.dmv.org/how-to-guides/parallel-parking.php

Zico Kolter video

Reinforcement Learning

= We still assume an MDP:
= AsetofstatessES
= A set of actions (per state) A
= A model T(s,a,s’)

= Areward function R(s,a,s’)

= Still looking for a policy m(s)

= New twist: don’t know T or R, so must try out actions

= Bigidea: Compute all averages over T using sample outcomes

Two main reinforcement learning approaches

* Model-based approaches:
= explore environment & learn model, T=P(s’[s,a) and R(s,a), (almost) everywhere
* use model to plan policy, MDP-style
» approach leads to strongest theoretical results
= often works well when state-space is manageable

» Model-free approach:
= don't learn a model; learn value function or policy directly
= weaker theoretical results
= often works better when state space is large

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, * Value / policy iteration
\ Evaluate a fixed policy © Policy evaluation)
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, * VI/PI on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy « PE on approx. MDP Evaluate a fixed policy « Value Learning

. J J

Two main reinforcement learning approaches

" Model-based approaches:

Learn T+R
|S|?|A| + |S||A| parameters (40,400)

" Model-free approach:
Learn Q
IS||A| parameters (400)

Reminder: Q-Value Iteration

= Foralls, a

= |nitialize Qy(s,a) =0 no time steps left means an expected reward of zero
= K=0
= Repeat do Bellman backups

For every (s,a) pair:

Qit1(s,0) < Y T(s,0,5) |R(s,0,5) +7 maxQy(s',a)

S

K +=1 V. (s’)=Max_Q,(s’,a’)

= Until convergence l.e., Q values don’t change much

Model-Free (aka Temporal Difference) Learning

= Don’t have T(s,a,s’)] S

= Can’t do proper Bellman backup ?1?!? S, 3

= Experience world through episodes © !! r
(S,&,T, S/,a/,,T,,S//,a/”,T”,S//”...) | As'

= Update estimates each transition ?é a,
(s,a,r,s’)

= Over time, updates will mimic Bellman updates A"

Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qut1(5,0) = Y T(s,0,8) | R(sa.8) + 7 max Qu(s',)
/ a

S
= But can’t compute this update without knowing T, R

" |nstead, compute average as we go
= Receive a sample transition (s,a,r,s’)
= This sample suggests

Q(s,a) ~ r +ymaxQ(s',a’)

a
= But we want to average over results from (s,a) (Why?)

= So keep a running average

Qs,a) — (1= 2)Q(s,a) + (@) [r + ymax Q(s,a')

Q Learning

" Foralls, a
* |nitialize Q(s,a)=0
= Repeat Forever
Where are you? s.
Choose some action a
Execute itin real world: (s, a, r, s’)
Do update:

Qs,0) — (1= a)Q(s,0) + (@) |r +7maxQ(s', a)

Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

" This is called off-policy learning

= (Caveats:
= You have to explore enough

®" You have to eventually make the learning rate

small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid

Q Learning

= Foralls, a
= |nitialize Q(s, a) =0
= Repeat Forever
Where are you? s.
Choose some action a
Execute itin real world: (s, a, r, s’)
Do update:

Qs,0) — (1= a)Q(s,0) + (@) |r +7maxQ(s', a)

Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
S
(o~

How to Explore?

= Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning — Manual Exploration — Bridge Grid

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s;a) <—a R(s,a,s") +~ max Q(s',d)
Modified Q-Update: Q(s,a) <—a R(s,a,s") +~ max f(Q(s',a"), N(s',a))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function — Crawler

Regret

= Even if you learn the optimal policy,
you still make mistakes along the way!

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Approximate Q-Learning

Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

" |n realistic situations, we cannot possibly learn

about every single state!
= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

" |nstead, we want to generalize:
= Learn about some small number of training states from

experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Video of Demo Q-Learning Pacman — Tiny — Watch All

Video of Demo Q-Learning Pacman — Tiny — Silent Train

Video of Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

Solution: describe a state using a vector of
features (aka “properties”)
= Features are functions from states to real numbers (often
0/1) that capture important properties of the state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1 /(dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

» Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CL) — wlfl(sa a,)—l—’UJQfQ(S, CL)"- . °+wnf’n(87 a)
= Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QUs,0) = wifi(s @) wafals,)+ Aunfals,a)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Qs a’)] — Q(s,a)
Q(s,a) +— Q(s,a) + «[difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

Example: Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) — 1.0fGST(S,CL)

fDOT(S, NORTH) = 0.5

a = NORTH /

r = —500
fasr(s,NORTH) = 1.0

Q(s,NORTH) = +1 Q(s,)=0
r + v max Q(s',a’) = —-500+0

wpor +— 4.0+ a[-501]0.5
wosy — —1.0 + a[-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsT(5,a) (pemo: approximate o

learning pacman (L11D10)]

difference = —501

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression™

407

20

f1(x)

Prediction:
Yy = wo + wi f1(x)

Prediction:

y; = wo + wi f1(x) + wo fo(x)

Optimization: Least Squares™

1

2
total error =Y (y; — §:)° =3 (yz- - Zwkfk:(%')>
- k

. Error or “residual”
Observation Y

Prediction g

0 f1(x) :

Minimizing Error*®

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(az))
k
0 egror(w) = — (y — Z’L%fk(@) fm(x)
Wi, k

Wi, <= Wm + (y — Zwkfk($)> fm(x)
P

Approximate q update explained:
W, < Wm + & [7“ + max Qs a") — Q(s, a)} fm(s,a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
= E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
= WeEe'll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

* Nudge each feature weight up and down and see if your policy is better than before

=" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
" |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Policy Search

[Andrew Ng] [Video: HELICOPTER]

Conclusion

= We’'re done with Part |: Search and Planning!

= We've seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

= Next up: Part Il: Uncertainty and Learning!

