CSE 473: Artificial Intelligence

Reinforcement Learning

Dan Weld

University of Washington

[Most of these slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available

at http://ai.berkeley.edu.]

Midterm Postmortem

" |t was long, hard... ®
= Max 41
= Min 13
= Mean & Median 27

= Final
= Will include some of the midterm problems

Office Hour Change (this week)

= Thurs
10-11am
= CSE 588
= (Not Fri)

“Listen Simkins, when | said that you could
always come to me with your problems, |
meant during office hours!”

Reinforcement Learning

Two Key Ideas

= Credit assignment problem
= Exploration-exploitation tradeoff

Reinforcement Learning

State:s
Reward: r|

Environm
ent

= Basic idea:
= Receive feedback in the form of rewards
Agent’s utility is defined by the reward function

Must (learn to) act so as to maximize expected
rewards

All learning is based on observed samples of
outcomes!

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'm in state 43, reward = 0, action =2

I'm in state 43, reward = 0, action =2

« 39, “« =0, “ =4

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'm in state 43, reward = 0, action =2
‘39, © =0 * =4
‘22, “ =0, * =1

I'm in state 43, reward = 0, action =2
* 39, =0, " =4
t 22, =0, * =1
"1, ‘=0, * =1

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'm in state 43, reward = 0, action =2
“ 39, =0, * =4
* 22, =0, * =1
t21, =0, " =1
t21, =0, * =1

I'm in state 43, reward = 0, action =2
“ 39, =0, * =4
* 22, =0, * =1
t21, =0, * =1
t21, =0, * =1

‘13, © =0 " =2

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'm in state 43, reward =0, action =2
"B, =0, " =4
ot 22, =0, * =1
o2, =0, * =1
t21, “o=0, * =1
13, =0 * =2
‘54, =0, * =2

I'm in state 43, reward =0, action =2
-) ©o=0, * =4

“oe e “ =0, * =1
e, © =0, “ =1

- 21, ©o=0, * =1

Yippee! [got to a stdte with a big rewfrd! * =2

But which of my actions along the way
54.actually helped fhe get tHgie?
This is the Cg;edlt‘A%%lygnment pj{0b=|e1r(l)'1¢ \

Exploration-Exploitation tradeoff

Example: Animal Learning

= You have visited part of the state space and found a
reward of 100
= is this the best you can hope for???

= Exploitation: should | stick with what | know and find a
good policy w.r.t. this knowledge?
= at risk of missing out on a better reward somewhere

= Exploration: should | look for states w/ more reward?
= at risk of wasting time & getting some negative reward

= RL studied experimentally for more than 60 years in
psychology

= Rewards: food, pain, hunger, drugs, etc.
= Mechanisms and sophistication debated

= Example: foraging

= Bees learn near-optimal foraging plan in field of ariificial ! h
flowers with controlled nectar supplies

= Bees have a direct neural connection from nectar intake
measurement to motor planning area

Example: Backgammon

Demos

= Reward only for win / loss in
terminal states, zero otherwise 0 1234556 738910112

= TD-Gammon learns a function
approximation to V(s) using a
neural network

= Combined with depth 3 search,
one of the top 3 players in the

|
R
AR
IR
[

R
L
RN

bl \

world e

1 it

I R

. . .) O N RERINRN

= You could imagine training yoooRoNRARRRE
Pacman thlS Way 25 242322212019 18 17 16 15 14 13

= ... butit’s tricky! (It's also P3)

= http://inst.eecs.berkeley.edu/~eel128/fall/
videos.html

Example: Learning to Walk

Initial A Learning Trial After Learning [1K
Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initi

Example: Learning to Walk

Finished
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finis

Example: Sidewinding

[Andrew Ng]

[Video: SNAKE — climbStep+sidewi

The Crawler!

S~
]

[Demo: Crawler Bot (L10D1)] [You, in Pt

Video of Demo Crawler Bot

Other Applications

Robotic control
= helicopter maneuvering, autonomous vehicles

= Mars rover - path planning, oversubscription planning

= elevator planning

Game playing - backgammon, tetris, checkers
Neuroscience

Computational Finance, Sequential Auctions

Assisting elderly in simple tasks

Spoken dialog management

Communication Networks — switching, routing, flow control
War planning, evacuation planning

Reinforcement Learning

= Still assume a Markov decision process (MDP):
= Asetof statessES

= A set of actions (per state) A .

= A model T(s,a,s’)) 6)

= Areward function R(s,a,s’) & discou o “
= Still looking for a policy mt(s) owteaed

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Overview

Offline (MDPs) vs. Online (RL)

= Offline Planning (MDPs)
= Value iteration, policy iteration

= Online: Reinforcement Learning
= Model-Based

= Model-Free
= Passive
= Active

Offline Online
Solution Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

= Simplified task: policy evaluatiol
= Input: a fixed policy 7t(s)
= You don’t know the transitions T(s
= You don’t know the rewards R(s,a,
= Goal: learn the state values

= |n this case:
= Learner is “along for the ride”
= No choice about what actions to ti
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

Model-Based Learning

= Model-Based Idea:
= Learn an approximate model based on experienc
= Solve for values as if the learned model were cort

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of
= Discover each T(S,ll-, S)s experience (s,
R(s,a,5)
= Step 2: Solve the learned MDP A
= For example, use value iteration, as before

ample: Model-Based Learning

Model-Free Learning

Input Observed Episodes Learned
Policy .~ (Training) | Madel,
Episode pisode T(s,a,s")

Assume:y=1

T(B, east, C) =
1.00

I 2
B, east, C, B, east, C,

-1 -1 T(C, east, D) =
C, east, D, C, east, D, 0.75

-1 -1

D, exit, X, D, exit, X, 0.2A5
+Episode +Apisode R(s,a,s)

E, noFJ%h, C, - E, noﬁh, C,-

C, east, D,- C, east, A, - R(B, east, C) = -1
D, exit, x, A, exit, x, -)=-1
+10. =

Simple Example: Expected Age

Direct Evaluation

Goal: Compute expected age of CSE 473

students

Known

|

PTAY
EA]=Y P@)-a =035x20+... J

Without P(A), instead collect samples [a,, a,, ... ay]

/ Unknown P(A): “Model \ / Unknown P(A): “Model \
[

Based Free |
Wh

Why does . num(a) iy s

. P(a) = this work?
this work? N 1
‘ ~ Because
Because EAl~x=) o
eventuall D N S
M E[AI X ZP(G)'G ! appear with
you learn the .

a the right

right model.

_frequencies.

= Goal: Compute values for each state
under x s
= |dea: Average together observed
sample values
= Act according to

= Every time you visit a state, write down
what the sum of discounted rewards
turned out to be

= Average those samples

= This is called direct evaluation

Example: Direct Evaluation

Problems with Direct Evaluation

Input Policy Observed Episodes Output Values
T Ing
Epis ode gp ode
N
B, eag't, C, B, eaét, C,
-1 -1
C, east, D, C, east, D,
=1 NN |
D, exit, x, D, exit, x,

+ipisode +ipisode

(3 N [~ 4

E, north, C, -1 E, north, C, -
C,east, D, -1 C,east, A, -
Assume:y =1 D, exit, x, A, exit, x,-
\+10 AN

= What’s good about direct Output Values

evaluation?
= |t's easy to understand
= It doesn’t require any knowledge of T, R

= |t eventually computes the correct
average values, using just sample
transitions

= What bad about it?
= |t wastes information about state
connections

If B.and E both go to
C under this policy,
. how can their values

= Ignores Bellman equations be different?

= Each state must be learned separately

= So, it takes a long time to learn

Why Not Use Policy Evaluation?

Sample-Based Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policyg S
= Each round, replace V with a one-step-look-ahead layer over V

7(s)

s, 1t(s)

Via(s) & ZT 5,7(s),8")[R(s,7(s),8") + 1V (s")] ‘,S;'/ O\
o 7(s),s As
= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without
knowing T and R?
= |n other words, how to we take a weighted average without
knowing the weights?

= We want to improve our estimate of V by computing these

averages
(s <—ZTs7r $)[R(s,7(s),8") + V[()]

= |dea: Take samples of outcomes s’ (by dnins the actianl) and
average

sample; = R(s,m(s),s7) + V7 (s}) —
sampley = R(s,7(s), sh) + 1V (sh)

samplen = R(s,7(s), s) + 1V (s5,) 5 & 7|

1
Vi =Y sample
A+1(3) n? sample;

Temporal Difference Learning

Exponential Moving Average

= Bigidea: learn from every experience! S
= Update V(s) each time we experience a transition (s, a,
s, r) 7i(s)
= Likely outcomes s’ will contribute updates more often s,
7(s)

= Temporal difference learning of values
= Policy still fixed, still doing evaluation! As
= Move values toward value of whatever successor
occurs: running average

sample of V(s): sample = R(s, (s),s") + V(')
Update to V(s): V™(s) « (1 - a)V™(s) + (a)sample

Same update: V7(s) + V7(s) 4 a(sample — V7(s))

= Exponential moving average
® The running interpolation upgate: (1 - a) o1t Q- Ty,

= Makes recent samples more important:

: _$n+(1—a)-xn,1+(l—a)2-$n,2+...
! I+(1-a)+(1-a)?+...

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging
averages

Example: Temporal Difference Learning

States Observed Transitions
[B, east, C,] [C, east, D,]
-2 -2

elclo

Assume:y=1,a=
1/2

Problems with TD Value Learning

= TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy,
we’re sunk:

7(s) = argmaxQ(s,a)

Q(s,a) = Z T(s,a,s') [If(,s'. a,8) 47 \'(5,)}

v
ﬁ,/

= |dea: learn Q-values, not values)
= Makes action selection model-free too! *

Active Reinforcement Learning

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like
value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= You choose the actions now
= Goal: learn the optimal policy / values

= |n this case:
= Learner makes choices!
= Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

Exploration vs. Exploitation

How to Explore?

= Several schemes for forcing
exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current
policy

= Problems with random actions?

= You do eventually explore the space, but
keep thrashing around once learning is
done

= One solution: lower € over time

= Another solution: EXploraﬁqﬂeM&ﬂwﬁng —manual exploration — bridge grid
(L11D2)] [Demo: Q-learning — epsilon-greedy --

Reminder: Q-Value Iteration

= Forall s, Initialize V(s) =0 no time steps left means an expected
reward of zero

= Repeat do Bellman backups
Quiq(s,a) =2y T(s, a,8)[R(s, a, ") +y Max , Q,

(s;a)]
K +=1

= Until convergence

Q-Learning

= Q-Learning: sample-based Q-value
iter~*--

Quta(s.0) & L7050 [Rls.0.) 47 max Q)|

§
= Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estir?(s.9)
= Consider your new sample estimate:

sample = R(s,a,s") + 7 max Q(s',d)
a

= Incorporate the new estimate into a running
average:

Q(s,0) = (1 - 2)Q(s,a) + (o) [sample]

[Demo: Q-learning — g(ﬁf{BQﬁ

[Demo: Q-learning - crawlet

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

= Amazing result: Q-learning converges to optimal
policy -- even if you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learnir
small enough

= ... but not decrease it too quickly =

. ———
= Basically, in the limit, it doesn’t matter how you select
actions (!)

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badnes
(yet) established, eventually stop explori

= Exploration function

= Takes a value estimate u and a visit cour
returns an optimistic utility, e.g. -

flu,n) =u+k/n

Regular Q-Update)(s,a) < R(s,0,s') +ymaxQ(s',d)

= nMedifirdPpagat?d(s.a) ¢a R(s,a.s) +7 'ﬂﬁx‘f(Q(S,ﬂ/)«f\‘v(v‘,-”,»

ubkRRARR states as well!

[Demo: exploration — Q-learning — crawler — exploration

Video of Demo Q-learning — Exploration Function —
Crawler

Regret

Even if you learn the optimal
policy, you still make mistakes
along the way!

Regret is a measure of your
total mistake cost: the
difference between your
(expected) rewards, including
youthful suboptimality, and
optimal (expected) rewards
Minimizing regret goes beyonc
learning to be optimal — it
requires optimally learning to
be optimal

Example: random exploration
and exploration functions both
end up optimal, but random
exploration has higher regret

