CSE 473: Artificial Intelligence

Reinforcement Learning

24..

University of Washington

[Most of these slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Midterm Postmortem

- It was long, hard... 🕾
 - Max 41Min 13Mean & Median 27
- Final
 - Will include some of the midterm problems

Office Hour Change (this week)

- Thurs 10-11am
 - CSE 588
 - (Not Fri)

"Listen Simkins, when I said that you could always come to me with your problems, I meant during office hours!"

Reinforcement Learning

Two Key Ideas

- Credit assignment problem
- Exploration-exploitation tradeoff

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

The "Credit Assignment" Problem

I'm in state 43,

reward = 0, action = 2

The "Credit Assignment" Problem

I'm in state 43,

reward = 0, action = 2

" " " 39, " = 0, " = 4

The "Credit Assignment" Problem

I'm in state 43, reward = 0, action = 2

" " 39,

" = 0, " = 4

" " " 22, " = 0, " = 1

The "Credit Assignment" Problem

I'm in state 43,

reward = 0, action = 2

"""39,

" = 0, " = 4

" " " 22, " = 0, " = 1

" " 21,

" = 0, " = 1

The "Credit Assignment" Problem

I'm in state 43,

reward = 0, action = 2

" " " 39,

" = 0, " = 4

" " 22,

" = 0, " = 1

" " 21, " = 0, " = 1

" " " 21, " = 0, " = 1

The "Credit Assignment" Problem

I'm in state 43,

reward = 0, action = 2

" " " 39,

" = 0, " = 4

" " 22,

" = 0, " = 1

" " 21, " = 0, " = 1

" " 13,

" = 0, " = 2

The "Credit Assignment" Problem

ľm	in s	state 43,	reward	d = 0,	actio	n = 2
"	44	" 39,	u	= 0,	"	= 4
"	u	" 22,	u	= 0,	"	= 1
"	44	" 21,	u	= 0,	"	= 1
"	u	" 21,	u	= 0,	"	= 1
"	"	" 13,	u	= 0,	"	= 2
"	"	" 54,	44	= 0,	"	= 2

The "Credit Assignment" Problem

	I'm in state 43,		e 43,	reward = 0, action = 2		n = 2		
	u	"	66	39,	"	= 0,	"	= 4
	u	"	"	22,	"	= 0,	"	= 1
	u	"	66	21,	44	= 0,	"	= 1
	u	"	"	21,	"	= 0,	"	= 1
Yippee!	! " g	jot to	o å	state with a	a big r	e ₩ @rd!	"	= 2
But whi	ch c	of my	y a	ctions along ⁵⁴ ,actually			" get	there??
This is	the	Crec	tit,/	Assignmen 26,				

13

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - is this the best you can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - at risk of missing out on a better reward somewhere
- Exploration: should I look for states w/ more reward?
 - at risk of wasting time & getting some negative reward

15

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated
- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to V(s) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way...
- ... but it's tricky! (It's also P3)

Demos

http://inst.eecs.berkeley.edu/~ee128/fa11/ videos.html

18

Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initia

Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finis

Example: Sidewinding

[Andrew Ng]

[Video: SNAKE – climbStep+sidewi

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Pro

Video of Demo Crawler Bot

Other Applications

- Robotic control
 - helicopter maneuvering, autonomous vehicles
 - Mars rover path planning, oversubscription planning
 - elevator planning
- Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control
- War planning, evacuation planning

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s') & discount

- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Overview

- Offline Planning (MDPs)
 - Value iteration, policy iteration
- Online: Reinforcement Learning
 - Model-Based
 - Model-Free
 - Passive
 - Active

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy π(s)
 - You don't know the transitions T(s
 - You don't know the rewards R(s,a,
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to to
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experience
 - Solve for values as if the learned model were corr

- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of
 - Discover each $\hat{T}(s, a, s')$ e experience (s, $\hat{R}(s, a, s')$
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Assume: $\gamma = 1$

Observed Episodes (Training) Episode Episode

B, east, C,

C, east, D,

D, exit, x,

+**Ep**isode

E, north, C, -1

C, east, A, -1

A, exit, x, -10

+**Ep**isode E, north, C, -1 C, east, D, -1 D, exit, x,

+10

Learned

 $\widehat{T}(s,a,s')$ T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C. east 0.25 $\hat{R}(s, a, s')$

R(B, east, C) = -1R(C, east, D) = -1 R(D, exit, x) =

Model-Free Learning

Simple Example: Expected Age

Goal: Compute expected age of CSE 473

students

Known

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Why does this work? Because samples appear with the right

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Assume: γ = 1

Observed Episodes (Training) Episode Episode

B, east, C,

C, east, D,

D, exit, x,

+**Ep**isode

C, east, D, -1

D, exit, x,

+Episode E, north, C, -1 E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10	
+8 B	+4 C	+10 D
	-2 E	

 $s, \pi(s)$

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state
 - Ignores Bellman equations
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and F both ao to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy: s
 - Each round, replace V with a one-step-look-ahead layer over V

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key guestion: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

 We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

 Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a,
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $(1-lpha)\cdot ar{x}_{n-1} + lpha\cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\begin{split} \pi(s) &= \operatorname*{arg\,max}_a Q(s,a) \\ Q(s,a) &= \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right] \end{split}$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy

- You do eventually explore the space, but keep thrashing around once learning is done
- One solution: lower ϵ over time
- Another solution: exploration functions manual exploration bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy --

Reminder: Q-Value Iteration

- Forall s, Initialize V₀(s) = 0 no time steps left means an expected reward of zero
- Repeat

do Bellman backups

 $Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma Max_a Q_k (s, a)]$ $K \leftarrow 1$

Until convergence

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estir^Q(s,a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{s} Q(s', a')$$

Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)$$
 [sample]

[Demo: Q-learning – gridworld (L1002)]
[Demo: Q-learning –,crawler

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learnir small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badnes (yet) established, eventually stop explori
- Exploration function
 - Takes a value estimate u and a visit cour returns an optimistic utility, e.g.

 $\begin{tabular}{l} {\bf NMEdiffish Propagat} Q(s,a) \leftarrow_a R(s,a,s') + \gamma \max_{a'} f(Q(s',a'),N(s',a')) \\ {\bf uhlar fathe} \end{tabular}$

 $[{\sf Demo: exploration-Q-learning-crawler-exploration}]$

Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

