CS 188: Artificial Intelligence
Markov Decision Processes K+1

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Midterm Review

- Agency: types of agents, types of environments

= Search
= Formulating a problem in terms of search
= Algorithms: DFS, BFS, IDS, best-first, uniform-cost, A*, local
= Heuristics: admissibility, consistency, creation, pattern DBs

= Constraints: formulation, search, forward checking, arc-consistency, structure
= Adversarial: min/max, alpha-beta, expectimax
= MDPs

= Formulation, Bellman eqns, V¥, Q*, backups, value iteration, policy iteration

3

Stochastic Planning: MDPs

STeTe

Recap: MDPs

Environment

Fully
Observable

What action Stochastic
next?

Instantaneous
Perfect

Percepts Actions

Markov decision processes:

= States S

= Actions A

= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y)
= Start state s,

Quantities:

= Policy = map of states to actions . -
= Utility = sum of discounted rewards ‘
= Values = expected future utility from a state (max node) .,
= Q-Values = expected future utility from a g-state (chance node) ,z’s,a,s'

Solving MDPs

The Bellman Equations

= Value Iteration

= Policy Iteration

= Reinforcement Learning

The Bellman Equations

Gridworld: Q*

= Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship
amongst optimal utility values N

V*i(s) = max Q*(s,a)

Q*(s,0) =Y. T(s,a,5) [/m a,8') +V*(s")

® These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Q-VALUES AFTER 100 ITERATIONS

Gridworld Values V* V' (s) = maxQ’(s,a)

Value Iteration

VALUES AFTER 100 ITERATIONS

Value Iteration

= Forall s, Initialize Vy(s) =0 no time steps left means an expected reward of zero
= Repeat do Bellman backups
K+=1
Quui(s, @) = Z; T(s, a, 8') [R(s, @, 8) + v Vi(s')]

Vis(8) = Max , Qs (s, @)

= Repeat until |V,,,(s)-V,(s) | <g, foralls “convergence”

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

If agent is in 4,3, it only
has one legal action:
get jewel. ltgets a
reward and the game
is over.

If agent is in the pit, it
has only one legal
action, die. Itgets a
penalty and the game
is over.

Agent does NOT get a
reward for moving
INTO 4,3.

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward = 0

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Bellman Backup

Policy Extraction

Qq(s,a;)=2+y0

Q,(s.a,) =5+ 0.9~ 1

+90.1~2
~6.1
Qq(s,a;)=4.5+7y2
~6.5

Computing Actions from Q-Values

Problems with Value Iteration

= Let’s imagine we have the optimal g-values:

= How should we act?

= Completely trivial to decide!

7*(s) = argmaxQ*(s,a)

= |mportant lesson: actions are easier to select from g-values than values!

= Value iteration repeats the Bellman updates:
Vig1(s) « max Y T(s,a,8) [R(s,a,5) + 7 \»’k(#)}

= Problem 1: It’s slow — O(S?A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

VI = Asynchronous VI

Prioritization of Bellman Backups

= |s it essential to back up all states in each iteration?
= No!

= States may be backed up
= many times or not at all
= in any order

= As long as no state gets starved...
= convergence properties still hold!!

= Are all backups equally important?

= Can we avoid some backups?

= Can we schedule the backups more appropriately?

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Asynch VI: Prioritized Sweeping

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Why backup a state if values of successors same?
Prefer backing a state
= whose successors had most change

Priority Queue of (state, expected change in value)
Backup in the order of priority

After backing a state update priority queue
= for all predecessors

Solving MDPs

Policy Methods

= Value Iteration
= Policy Iteration

= Reinforcement Learning

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 7t(s), then the tree would be simpler — only one action per state

... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Example: Policy Evaluation

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy mt:
Va(s) = expected total discounted rewards starting in s and following

Recursive relation (one-step look-ahead / Bellman equation):

V7(s) = Y T(s,m(s),) [R(s,7(s),s) + V7 (sN)]

Always Go Right

Always Go Forward

Example: Policy Evaluation

Policy Iteration

Always Go Right

Always Go Forward

Policy Iteration

Policy Iteration Details

= Initialize mt(s) to random actions
= Repeat
= Step 1: Policy evaluation: calculate utilities of it at each s using a nested loop
= Step 2: Policy improvement: update policy using one-step look-ahead
“For each s, what’s the best action | could execute, assuming | then follow rt?
Let 1'(s) = this best action.
n=m

= Until policy doesn’t change

Leti=0
Initialize m(s) to random actions
Repeat
= Step 1: Policy evaluation:
= Initialize k=0; Forall's, V" (s) =0
= Repeat until V" converges

* Foreachstates, i () « 3 T(s,m(s).s)) [R(&m(s).s’) +7 Vf’(s’ﬂ

=letk+=1
= Step 2: Policy improvement:
= For each state, s, mip1(s) = argmaxy_ T(s,a,s") [R(s. a,s') +~ \"'”4(5')]
a ,\'

= If ;== 1,,, then it's optimal; return it.
" Elseleti+=1

Example

Example

Initialize mty to “always go right”
Perform policy evaluation

Perform policy improvement
Iterate through states

Has policy changed?

Yes! i+=1

T, says “always go up”
Perform policy evaluation

Perform policy improvement
Iterate through states

Has policy changed?

No! We have the optimal policy

Example: Policy Evaluation

Policy Iteration Properties

Always Go Right

Always Go Forward

= Policy iteration finds the optimal policy, guarenteed!
= Often converges (much) faster

Comparison

Summary: MDP Algorithms

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
= The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

= So you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

= These all look the same!
= They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments

= They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Next Time: Reinforcement Learning!

