

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$\begin{split} V^*(s) &= \max_{a} Q^*(s, a) \\ Q^*(s, a) &= \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\ V^*(s) &= \max_{a'} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \end{split}$$

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

- Start with V₀(s) = 0:
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Number of iterations: poly(|S|, |A|, 1/(1-g))
- Theorem: will converge to unique optimal values

Value Iteration

Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method
 ... though the V_k vectors are also interpretable as time-limited values

Convergence*

- How do we know the V_k vectors will converge?
- . Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed a depth k+1 expectimax results in nearly identical search trees
 - The max difference happens if big reward at k+1 level

 - That last layer is at best all R_{MAX}
 But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{l} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2

VI → Asynchronous VI

- Is it essential to back up *all* states in each iteration?
 - No!
- States may be backed up
 - many times or not at all
 - in any order
- As long as no state gets starved...
 - convergence properties still hold!!

44

Prioritization of Bellman Backups

- Are all backups equally important?
- Can we avoid some backups?
- Can we schedule the backups more appropriately?

Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change
- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{i} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{\prime} T(s,a,s') \left[R(s,a,s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - $\ ^{\bullet}$ They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Next Time: Reinforcement Learning!