CS 188: Artificial Intelligence
Markov Decision Processes Il

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Stochastic Planning: MDPs

ST
Environment ——
Fully

Observable
What action Stochastic
next?

Instantaneous
Perfect
Percepts Actions

Recap: MDPs

= Markov decision processes:
= StatesS
= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y)
= Start state s,

s
= Quantities: NI
= Policy = map of states to actions Pts - N R
= Utility = sum of discounted rewards 4
= Values = expected future utility from a state (max node) .

.
= Q-Values = expected future utility from a g-state (chance node) ’/’s,a,s'

Solving MDPs

= Value Iteration
= Policy Iteration

= Reinforcement Learning

Optimal Quantities

= The value (utility) of a state s:
V’(s) = expected utility starting in s and

: C sisa
acting optimally state
= The value (utility) of a g-state (s,a): (qs—:;a)t: a
Q’(s,a) = expected utility starting out
having taken action a from state s and (sas)isa
(thereafter) acting optimally transition

= The optimal policy:
nt"(s) = optimal action from state s

[Demo: gridworld values (L9D1)]

Gridworld Values V*

VALUES AFTER 100 ITERATIONS

The Bellman Equations

Gridworld: Q*

Q-VALUES AFTER 100 ITERATIONS

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

Racing Search Tree

= Definition of “optimal utility” via expectimax recurrence

gives a simple one-step lookahead relationship
amongst optimal utility values

Vi(s) = mﬂax()’(.s.u)

Q*(s.a) =Y. T(s,a,s") [n@.”. ') + AV -(,’)j

Vi(s) = m'?xz T(s,a,s") {R(SA a,s') + v V*(s’):

= These are the Bellman equations, and they characterize

optimal values in

a way we’ll use over and over

[

We're doing way too much
work with expectimax!

Problem: States are repeated
* Idea: Only compute needed
quantities once

[
FATA AL

AN A fﬁ alalNe

Problem: Tree goes on forever AW R VA B AR A PPN Y vy dvy
= Idea: Do a depth-limited [N PR bbb v bl

computation, but with increasing Vi AL DA AAald LA Al

depths until change is small n ﬂﬂﬂ an”n wﬂﬂ
R

CHTIE TR T v

= Note: deep parts of the tree
eventually don’t matter if y < 1 (TR

Time-Limited Values

Time-Limited Values: Avoiding Redundant Computation

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends

in k more time steps

= Equivalently, it's what a depth-k expectimax would give from s

[Demo — time-limited values (L8D6)]

vy
LI CIE]

RRE NN

Value Iteration

Example: Value Iteration

Assume no discount (gamma=1) to keep math simple!

Called a

Bellman Bagkup” Value Iteration

Example: Bellman Backup

Vig1(s) « max 3 T(s,a,8) [R(s,a,5") + 7 Vi(s))]

= Repeat until convergence
(trust me, it does)

o(s) =0: no time steps left means an expected reward sum of zero

Qi(s,a)=2+7y0

Qq(s,a,)=5+y0.9~1
+y0.1~2
~6.1

Qq(s,a;)=4.5+y2
~6.5

k=0

k=1

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

If agent is in 4,3, it only
has one legal action:
get jewel. It gets a
reward and the game
is over.

If agent is in the pit, it
has only one legal
action, die. Itgets a
penalty and the game
is over.

Agent does NOT get a
reward for moving
INTO 4,3.

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

ﬂn

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount =0.9

Living reward = 0

H.
=
H

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 6 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 8 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward = 0

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

Value Iteration

Start with V(s) = 0:

Given vector of V,(s) values, do one ply of expectimax from each state:

= Bellman equations characterize the optimal values:

Veals) V*(s) = max Y T(s,a,5") [R(s,a,‘s’) + A(V*(s’)}
Vig1(s) max YT (s,a,) [R(s.a,8) +7 Vo) R
G
. N = Value iteration computes them:
= Repeat until convergence V(S')‘
i
Vig1(s) mﬂaxZT(s, a,s’) [R(s, a,s") +~ Vk(.‘;’)]
= Complexity of each iteration: O(S?A) s
= Number of iterations: poly(|S|, |A], 1/(1-
poly(ISl. Al 1/(1-g)) = Value iteration is just a fixed point solution method
. . . = ...though the V, vectors are also interpretable as time-limited values
= Theorem: will converge to unique optimal values
Convergence* Policy Extraction
= How do we know the V, vectors will converge?
Vie(s) Viet1(s)

= Case 1: If the tree has maximum depth M, then

V,, holds the actual untruncated values

Case 2: If the discount is less than 1
= Sketch: For any state V, and V,,, can be viewed as
depth k+1 expectimax results in nearly identical
search trees

The max difference happens if big reward at k+1 level

That last layer is at best all Ry / \ /

But everything is discounted by y* that far out

S0V, and V., are at most v max|R| different

So as k increases, the values converge

Computing Actions from Values

Computing Actions from Q-Values

Let’s imagine we have the optimal values V*(s)

How should we act?
= It's not obvious!

We need to do a mini-expectimax (one step)
7*(s) = arg max ZT(S‘ a,s)[R(s,a,s") +4V*(s)]

a -

E

This is called policy extraction, since it gets the policy implied by the values

= Let’s imagine we have the optimal g-values:

= How should we act?
= Completely trivial to decide!

™(s) = arg max Q*(s,a)

= Important lesson: actions are easier to select from g-values than values!

Problems with Value Iteration

VI = Asynchronous VI

= Value iteration repeats the Bellman updates:

Vig1(s) « max Y T(s,a,5) [/f(‘«.u.»’) + \;\(.s,)]

= Problem 1: It's slow — O(S?A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

= |s it essential to back up all states in each iteration?
= No!

= States may be backed up
= many times or not at all
= in any order

= As long as no state gets starved...
= convergence properties still hold!!

Prioritization of Bellman Backups

k=1

= Are all backups equally important?

= Can we avoid some backups?

= Can we schedule the backups more appropriately?

VALUES AFTER 1 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

k=2

VALUES AFTER 2 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

Asynch VI: Prioritized Sweeping

Solving MDPs

= Why backup a state if values of successors same?
= prefer backing a state
= whose successors had most change

= Priority Queue of (state, expected change in value)
= Backup in the order of priority
= After backing a state update priority queue

= for all predecessors

= Value Iteration
= Policy Iteration

= Reinforcement Learning

Policy Methods

Policy Evaluation

Fixed Policies

Utilities for a Fixed Policy

Do the optimal action Do what 7 says to do
s
7(s)
s, 7(s)

z - ~
LS Ts)s ~

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 7t(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:
V7(s) = expected total discounted rewards starting in s and following

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) = 3 T(s,m(s),) [R(s,m(s),8") +~4V(s")]

Example: Policy Evaluation

Example: Policy Evaluation

Always Go Right

Always Go Forward

Always Go Right Always Go Forward

Policy Evaluation

Policy Extraction

How do we calculate the V’s for a fixed policy 7?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vi(s)=0

Vit (s) < ZT(S, 7(s),s)[R(s,7(s),s") + ’)’V[‘(S,)]

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
* Solve with Matlab (or your favorite linear system solver)

Computing Actions from Values

Computing Actions from Q-Values

Let’s imagine we have the optimal values V*(s)

How should we act?
= It's not obvious!

We need to do a mini-expectimax (one step)
7*(s) = arg max ZT(S‘ a,s)[R(s,a,s") +4V*(s)]
a -

This is called policy extraction, since it gets the policy implied by the values

= Let’s imagine we have the optimal g-values:

= How should we act?
= Completely trivial to decide!

™(s) = arg max Q*(s,a)

= Important lesson: actions are easier to select from g-values than values!

Policy Iteration

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration

= |t’s still optimal!
= Can converge (much) faster under some conditions

Policy Iteration

Comparison

= Evaluation: For fixed current policy =, find values with policy evaluation:
= lterate until values converge:

V() = S T(smi(s),8) [R(s,mis),)+ V()]

= Improvement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mip1(s) = argmax Y. T(s,a,s") [R(s, a,s) + w"r(s/)]

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)
= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
= The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

Double Bandits

= So you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

= These all look the same!
= They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments
= They differ only in whether we plug in a fixed policy or max over actions

10

Double-Bandit MDP

Offline Planning

= Actions: Blue, Red No discount
= States: Win, Lose 100 time steps

Both states have
the same value

= Solving MDPs is offline planning

No discount
= You determine all quantities through computation 100 time steps
= You need to know the details of the MDP Both states have

= You do not actually play the game! the same value

Play Red

Play Blue

Let’s Play!

Online Planning

$2 $2 $0 $2 $2
$2 $2 $0 $0 $O

= Rules changed! Red’s win chance is different.
?? S0
$1 ‘ $1

1.0 1.0

Let’s Play!

What Just Happened?

$0 $0 S0 $2 S0
$2 $0 $0 $O SO

= That wasn’t planning, it was learning!
= Specifically, reinforcement learning
= There was an MDP, but you couldn’t solve it with just computation
= You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know

= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP

11

Next Time: Reinforcement Learning!

12

