

Quiz: Discounting		
1	a b c d e st, West, and Exit (only available in exit sta	ites a, e)
• Quiz 1: For γ	= 1, what is the optimal policy?	10 1
■ Quiz 2: For γ	= 0.1, what is the optimal policy?	10 1
 Quiz 3: For which γ are West and East equally good when in state d? 		

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
- Case 2: If the discount is less than 1

 Sketch: For any state V, and V₂, can be viewed as depth k+ expectimas results in nearly identical search trees.
 The difference is that on the bottom layer, V_{1,3} has actual rewards while V₄ hat zero.
 That last layer is at best all R_{MAX}

 It is at wors R₂ is an expective to the control of the control of

Next Time: Policy-Based Methods