CS 473: Artificial Intelligence
Markov Decision Processes

Dan Weld

University of Washington

[Siides originally created by Dan Kiein & Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All 5188 materials are available at hitp://ai berkeley.edu]

Non-Deterministic Search

Example: Grid World

Grid World Actions

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80%of the time, the action North takes the agent North

(if there is no wall there)

10% of the time, North takes the agent West; 10% East

Ifthere is a wall in the direction the agent would have

been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Bigrewards come at the end (good or bad)

Goal: maximize sum of rewards

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

Markov Decision Processes

An MDP is defined by:
= Asetofstatess€S
= Asetofactionsa €A
= A transition function T(s, a, s')
= Probability thata from s leads to &, i.e., P(s’| 5, a)
* Also called the model or the dynamics.

T(sy1, E

T(s31, N, 51) =

T is a Big Table!
11X 4x 11 =484 entries
T

s. s.
31 Ny Sp1
i

S31, N, Sqy

TiSBII N, SSZE =

For now, we give this as input to the agent

An MDP is defined by:
= Asetofstatess€S
* Asetofactionsa €A
= Atransition function T(s, a, 5')
= Probability that a from s leads to s, i.e., P(s'| 5, a)
* Also called the model or the dynamics
= Areward function R(s, a, ')

R(s3,, N, S33) =-0.01 Cost of breathing

R(s35, N, 5,) = -1.01

R(s35, E, 543) = 0.99

Ris also a Big Table!

For now, we also give this to the agent

Markov Decision Processes

Markov Decision Processes

= An MDP is defined by:

* AsetofstatessES

= Asetofactionsa € A

= Atransition function T(s, a, s')
= Probability thata from s leads to &, L.e., P(s’| 5, a)
= Also called the model or the dynamics

= Areward function R(s, a, s')
= Sometimes just R(s) or R(s')

R(ss3) =-0.01

R(sg,) =-1.01
R(sg5) = 0.99

An MDP is defined by:

* AsetofstatessES

* AsetofactionsaEA

= Atransition function T(s, a, s')
= Probability that a from s leads to s, i.e., P(s'| 5, a)
= Also called the model or the dynamics

= Areward function R(s, a,)
= Sometimes just R(s) or R(s')

= Astart state

= Maybe a terminal state

MDPs are non-deterministic search problems
* One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo - gridworld manual intro (L8D1)]

What is Markov about MDPs?

Policies

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si1 = o

S0 = 51, Ay = a, -1 = si—1, A1, ... So = s0)

Andrey Markov
P(Si41 =[S = 50, Ay = ay) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

® In deterministic single-agent search problems,

= For MDPs, we want an optimal policy 1%: S > A

N 4 . . for all non-terminal:
= Expectimax didn’t compute entire policies or allnon-te als s

we wanted an optimal plan, or sequence of
actions, from start to a goal

* Apolicy gives an action for each state
An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03

= It computed the action for a single state only

Optimal Policies

Example: Racing

||| =| ||

) - | A [)=

L=<y I=<[<]=

R(s) =-0.01 R(s)=-0.03

||| =|=|=|([@

) A |z A =]

e NENE EEEL
o \—» R(s)=-0.4

R(s) =-2.0

Example: Racing

Racing Search Tree

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Slow

+1 Overheated

S

MDP Search Trees

Utilities of Sequences

= Each MDP state projects an expectimax-like search tree

(s,3,5") called a transition
T(sas")=P(s" |s,a)

R(sas’)

T

-\

Utilities of Sequences

Discounting

= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [23,4]
= Noworlater? [0,0,1] or [1,0,0]

v &

@
" 3

>

= It's reasonable to maximize the sum of rewards
= |t's also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

Stationary Preferences

= How to discount?

= Each time we descend a level, we N/ e
multiply in the discount once N .
R
= Why discount?
= Sooner rewards probably do have P 7
higher utility than later rewards v ¥
= Also helps our algorithms converge V..
= Example: discount of 0.5 e
= U([1,2,3)) = 1¥1+0.5*2 +0.25*3 ’YQ .
= U([1,2,3]) < U([3,2,1]) <! =3 4

= Theorem: if we assume stationary preferences:

— @
~8

G,
(@e

la1,a,..] = [br,ba ..]
¢

[ria1,a,...] = [r,b1,ba,..]

%

= Then: there are only two ways to define utilities
= Additive utility: ~ U([ro,r1,72,...)) =10 +r1+10+ -
= Discounted utility: U([rg,71,72,-..]) = ro +~r1 +v2rp--

Quiz: Discounting

Infinite Utilities?!

= Given:

a b ¢ d e
= Actions: East, West, and Exit (only available in exit states a, e)
= Transitions: deterministic

Quiz 1: For y = 1, what is the optimal policy?

(o] [| [1]
Quiz 2: Fory = 0.1, what is the optimal policy? ----

Quiz 3: For which y are West and East equally good when in state d?

Problem: What if the game lasts forever? Do we get infinite rewards?

Solutions:

* Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
* Gives nonstationary policies (x depends on time left)

* Discounting:use 0<y<1
x
U([ro, . -moc)) = 3 7't < Rmax/(1 —7)
=0
= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

Solving MDPs

= Markov decision processes:
= Set of states S
= Start state s
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y)

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Optimal Quantities

Snapshot of Demo — Gridworld V Values

= The value (utility) of a state s:
V’(s) = expected utility starting in s and

sisa
acting optimally state
(s,a)isa
= The value (utility) of a g-state (s,a): g-state
Q’(s,a) = expected utility starting out X
having taken action a from state s and (sas)isa
(thereafter) acting optimally transition

= The optimal policy:
7’(s) = optimal action from state s

[Demo - gridworld values (L8D4)]

VALUES AFTER 100 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

Snapshot of Demo — Gridworld Q Values

Values of States

Q-VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward = 0

Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

Recursive definition of value:
Vi (s) = maxQ’ (s, a)

)'(s,0) = Y T(s.0,8) [R(s.a,8) +4V*(s)]

V*(s) = max Y T(s,a,s") [n(g, a,s) + 7 v‘(,#)]

Racing Search Tree

Racing Search Tree

a5

e
O R AN

- e o -
1 nr N H M A H
I vv!'! 'v! YYUCPYY vev VNV

Wi o

LILEUIR L UTNE L T LTI UL U LT u\

Racing Search Tree

Time-Limited Values

= We're doing way too much -
work with expectimax!

= Problem: States are repeated
= Idea: Only compute needed
quantities once o

= Problem: Tree goes on forever f‘ Iw rl {l rﬁ r

AR AL R4] Yy o ey
= Idea: Do a depth-limited
computation, but with increasing

piaad

Lot vkl
Ahu LAl b
depths until change s small w w ﬁ q
= Note: deep parts of the tree ' it !
eventually don’t matter if y <1 LIECURETETITEC] LTIt

il

LT

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it's what a depth-k expectimax would give from s

o
e s Ve it

[Demo - time-limited values (L8D6)]

k=0

k=1

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

VALUES AFTER 2 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

H.

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 4 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

H.

nu

VALUES AFTER 5 ITERATIONS Noise =0.2
Discount = 0.9

Living reward =0

k=7

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 7 ITERATIONS Noise =0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 8 ITERATIONS Noise =0.2
Discount = 0.9

Living reward =0

VALUES AFTER 9 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 10 ITERATIONS Noise =0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 11 ITERATIONS

Noise =0.2
Discount =0.9
Living reward = 0

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 100 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

Computing Time-Limited Values

Value lteration

[\';(m] Vi(&) u(-)} <= [&]
o

.l
Vo(as) Vo(@) Vo(as) <:I CRUREE VRAREIIEE LOVNE U CRIINE e b

Value Iteration

Example: Value Iteration

= Start with Vy(s) = 0: no time steps left means an expected reward sum of zero
= Given vector of V,(s) values, do one ply of expectimax from each state:

Vig1(s) « max S T(s,a,5) [R(s,a,5) 47 Vi(s)]

= Repeat until convergence

= Complexity of each iteration: O(S?A)
= Theorem: will converge to unique optimal values

* Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

& @ &

Overhested

Assume no discount!

Vig1(s) < max 3 7(s,0,5) [R(s,a,5) + 7 Vi(s)

Convergence*

Next Time: Policy-Based Methods

How do we know the V, vectors are going to converge?
;
Vi(s) Viet1(s)
Case L: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1
= Sketch: For any state V, and V,,, can be viewed as depth k
+1 expectimax results in nearly identical search trees
The difference is that on the bottom layer, Vi, has actual
rewards while V, has zeros
= Thatlast layer is at best all Ry
Itis at worst Ry,

But everythingis discounted by y* that far out \ L

50V, and V,, are at most y* max|R| different
S0as kincreases, the values converge

