CSE 473: Artificial Intelligence
Fall 2014

Adversarial Search
Dan Weld

Based on slides from

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer

(besti ions from ai.berkeley.edu)

10/13/14

Outline

= Adversarial Search
= Minimax search
= 0-f search
= Evaluation functions
= Expectimax

= Reminder:
= Project 1 due Today

Types of Games

deterministic chance

perfect chess, checkers, | backgammon,
information go, othello monopoly

. bridge, poker,
imperfect ricge, poker.
. . stratego scrabble, nuclear
information

war

Number of Players? 1, 2, ...?

Deterministic Games

» Many possible formalizations, one is:
= States: S (start at s;)
= Players: P={1...N} (usually take turns)
= Actions: A (may depend on player / state)
= Transition Function: Sx A > S
= Terminal Test: S > {t,f}
= Terminal Utilities: Sx P> R

= Solution for a player is a policy: S > A

Previously: Single-Agent Trees

¢]
/\
l--!

O~

AL

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Previously: Value of a State

Value of a state: Non-Terminal States:
The best V()= max V(s)
achievable §'Echildren(s)

outcome (utility)
from that state

V(s) = known
Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Terminal States:

Adversarial Game Trees

3

AL

20 -8 .. -18 -5 .. -10 +4 -20 +8

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/13/14

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s)= max

V(s') V()= min V(s
' €successors(s) \ s€Esuccessors(s')

Terminal States:
V(s) = known

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Adversarial Search (Minimax)

= Deterministic, zero-sum games: Minimax values:
computed recursively

= Tic-tac-toe, chess, checkers
= One player maximizes result
= The other minimizes result

Minimax search:
= A state-space search tree
= Players alternate turns

= Compute each node’s minimax
value: the best achievable
utility against a rational
(optimal) adversary

Terminal values:
part of the game

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Minimax Implementation

def max-value(state):
initialize v = -0
for each successor of state:
v = max(v, min-
value(successor))
return v

def min-value(state):
initialize v = +oo
for each successor of state:
v = min(v, max-
value(successor))
return v

V(s)= max V() V()= min V(s)
s/ esuccessors(s) sesuccessors(s')

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Do We Need to Evaluate Every Node?

a-f Pruning Example

Progress of search...

10/13/14

o-p Pruning

= General configuration

= o is MAX’s best choice on Player
path to root

= If n becomes worse than
a, MAX will avoid it, so
can stop considering n’s H
other children Player

= Define similarly for MIN

Opponent

Opponent

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-val(state, o, B): def min-val(state , a, B):
initialize v = -0 initialize v = +oo
for each c in children(state): for each c in children(state):
v = max(v, min-val(c, o, B)) v = min(v, max-val(child, o, B))
ifv>preturnv if v<areturnv
o = max(a, v) B = min(B, v)
returnv return v

\

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta Pruning Example

At max node: o At min node:
Prune if v=f; Prune if v=a;

Update a Update

a is MAX's best alternative here or above
B is MIN’s best alternative here or above

Alpha-Beta Pruning Properties

= This pruning has no effect on final result at the root

= Values of intermediate nodes might be wrong!
= but, they are bounds

= Good child ordering improves effectiveness of pruning

= With “perfect ordering”:
= Time complexity drops to O(b™?2)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

Alpha-Beta Quiz

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta Quiz 2

lide from Dan Klein & Pieter Abbeel - ai berkelev.edu

Resource Limits

= Problem: In realistic games, cannot
search to leaves!

Solution: Depth-limited search

= Instead, search only to a limited depth
in the tree

= Replace terminal utilities with an
evaluation function for non-terminal
positions

= Example:

= Suppose we have 100 seconds, can
explore 10K nodes / sec
So can check 1M nodes per move
a-p reaches about depth 8 — decent
chess program

= Guarantee of optimal play is gone
= More plies makes a BIG difference

= Use iterative deepening for an
anytime algorithm

10/13/14

Depth Matters

= Evaluation functions are
always imperfect

= The deeper in the tree the
evaluation function is
buried, the less the quality
of the evaluation function
matters

= An important example of
the tradeoff between
complexity of features and
complexity of computation

[Demo: depth limited (L6D4,

Iterative Deepening

Iterative deepening uses DFS as a b
subroutine:

1. Do a DFS which only searches for
paths of length 1 or less. (DFS gives
up on any path of length 2)

2. If “1” failed, do a DFS which only
searches paths of length 2 or less.

3. If “2” failed, do a DFS which only
searches paths of length 3 or less.

....and so on.

Why do we want to do this for multiplayer
games?

Heuristic Evaluation Function

= Function which scores non-terminals

Black to move o S White to move

White slightly better - - Black winning

Eval(s) = w1 f1(s) +wafa(s) + ... + wnfu(s)
= |deal function: returns the utility of the position
= In practice: typically weighted linear sum of features:
= e.g. fi(s) = (num white queens — num black queens), etc.

Evaluation for Pacman

What features would be good for Pacman?

Eval(s) = w1f1(s) +waf2(s) + ... + wnfn(s)

Which algorithm?

a-p, depth 4, simple eval fun

QuickTime™ and a
IF decompressor
are needed to see this picture.

10/13/14

Which algorithm? Why Pacman Starves

a_ﬁz depth 4, better eval fun = He knows his score will go
up by eating the dot now

= He knows his score will go
up just as much by eating
the dot later on

QuieTimer and o = There are no point-scoring
are needed to see this picture. opportunities after eating
the dot

= Therefore, waiting seems
just as good as eating

