
10/10/14

1

CSE 473: Artificial Intelligence
Fall 2014

Adversarial Search
Dan Weld

Based on slides from

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer
(best illustrations from ai.berkeley.edu) 1

Outline
§  Adversarial Search

§ Minimax search
§  α-β search
§  Evaluation functions
§  Expectimax

§  Reminder:
§  Project 1 due Monday

Game Playing State-of-the-Art
§  Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

Game Playing State-of-the-Art
§  Chess: Deep Blue defeated human world champion Gary Kasparov in a

six-game match in 1997. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply. Current programs are
even better, if less historic.

Game Playing State-of-the-Art
§  Othello: Human champions refuse to compete against computers,

which are too good.
§  Go: Human champions are beginning to be challenged by machines,

though the best humans still beat the best machines on the full board.
In go, b > 300, so need pattern knowledge bases and monte carlo
search (UCT)

§  Pacman: unknown

Types of Games

stratego

Number of Players? 1, 2, …?

10/10/14

2

Deterministic Games

§  Many possible formalizations, one is:
§  States: S (start at s0)
§  Players: P={1...N} (usually take turns)
§  Actions: A (may depend on player / state)
§  Transition Function: S x A à S
§  Terminal Test: S à {t,f}
§  Terminal Utilities: S x Pà R

§  Solution for a player is a policy: S à A

Zero-Sum Games

§  Zero-Sum Games
§  Agents have opposite utilities

(values on outcomes)
§  Lets us think of a single value

that one maximizes and the
other minimizes

§  Adversarial, pure competition

§  General Games
§  Agents have independent utilities

(values on outcomes)
§  Cooperation, indifference,

competition, & more are possible
§  More later on non-zero-sum

games

Tic-tac-toe Game Tree

You choose

You choose

You choose

Opponent

Opponent

Deterministic Two-Player
§  E.g. tic-tac-toe, chess, checkers
§  Zero-sum games

§  One player maximizes result
§  The other minimizes result

8 2 5 6

max

min

§  Minimax search
§  A state-space search tree
§  Players alternate
§  Choose move to position

with highest minimax value
= best achievable utility against best play

Tic-tac-toe Game Tree Previously: Single-Agent Trees

8	

2	 0	 2	 6	 4	 6	 …	 …	

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/10/14

3

Previously: Value of a State
Non-‐Terminal	 States:	

8	

2	 0	 2	 6	 4	 6	 …	 …	 Terminal	 States:	

Value	 of	 a	 state:	
The	 best	
achievable	

outcome	 (u?lity)	
from	 that	 state	

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Adversarial Game Trees

-‐20	 -‐8	 -‐18	 -‐5	 -‐10	 +4	 …	 …	 -‐20	 +8	

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Minimax Values

+8	 -‐10	 -‐5	 -‐8	

States	 Under	 Agent’s	 Control:	

Terminal	 States:	

States	 Under	 Opponent’s	 Control:	

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Adversarial Search (Minimax)
§  Deterministic, zero-sum games:

§  Tic-tac-toe, chess, checkers
§  One player maximizes result
§  The other minimizes result

§  Minimax search:
§  A state-space search tree
§  Players alternate turns
§  Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8	 2	 5	 6	

ma
x	

mi
n	 2	 5	

5	

Terminal	 values:	
part	 of	 the	 game	 	

Minimax	 values:	
computed	 recursively	

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Minimax Implementation

def	 min-‐value(state):	
ini?alize	 v	 =	 +∞
for	 each	 successor	 of	 state:	

v	 =	 min(v,	 max-‐
value(successor))	

return	 v	

	

def	 max-‐value(state):	
ini?alize	 v	 =	 -∞
for	 each	 successor	 of	 state:	

v	 =	 max(v,	 min-‐
value(successor))	

return	 v	

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Concrete Minimax Example

min

max

10/10/14

4

Minimax Example

min

max

A1

Minimax Properties

§  Time complexity?

§  Space complexity?

10 10 9 100

max

min
§  O(bm)

§  O(bm)

§  For chess, b ∼ 35, m ∼ 100
§  Exact solution is completely infeasible
§  But, do we need to explore the whole tree?

§  Optimal?
§  Yes, against perfect player. Otherwise?

Do We Need to Evaluate Every Node? α-β Pruning Example

3 ≤2 ?

≥3

Progress of search…

α-β Pruning

§  General configuration
§  α is MAX’s best choice on

path to root
§  If n becomes worse than
α, MAX will avoid it, so
can stop considering n’s
other children

§  Define β similarly for MIN

Player

Opponent

Player

Opponent

α	

n

Alpha-Beta Implementation

def	 min-‐value(state	 ,	 α,	 β):	
ini?alize	 v	 =	 +∞
for	 each	 successor	 of	
state:	
v	 =	 min(v,	
value(successor,	 α,	
β))	

if	 v	 ≤	 α	 return	 v	
β	 =	 min(β,	 v)	

return	 v	

	

def	 max-‐value(state,	 α,	 β):	
ini?alize	 v	 =	 -∞
for	 each	 successor	 of	 state:	

v	 =	 max(v,	
value(successor,	 α,	
β))	

if	 v	 ≥	 β	 return	 v	
α	 =	 max(α,	 v)	

return	 v	

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

10/10/14

5

Alpha-Beta Pruning Example

12 5 1 3 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-∞ 	

β=+∞	

α=-∞
β=+∞	

α=-∞
β=+ ∞	

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=8
β=3

α=3
β=+∞	

α=3
β=+∞	

α=3
β=+∞	

α=3
β=+∞	

α=3
β=2

α=3
β=+∞	
 α=3

β=14
α=3
β=5

α=3
β=1

At max node:
 Prune if v≥β;
 Update α≤

At min node:
 Prune if α≤v;
 Update β

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5 9
5 6 2 1 7 4 0

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5
2 1 0

Alpha-Beta Pruning Properties
§  This pruning has no effect on final result at the root

§  Values of intermediate nodes might be wrong!
§  but, they are bounds

§  Good child ordering improves effectiveness of pruning

§  With “perfect ordering”:
§  Time complexity drops to O(bm/2)
§  Doubles solvable depth!
§  Full search of, e.g. chess, is still hopeless…

Resource Limits
§  Problem: In realistic games, cannot

search to leaves!
§  Solution: Depth-limited search

§  Instead, search only to a limited depth
in the tree

§  Replace terminal utilities with an
evaluation function for non-terminal
positions

§  Example:
§  Suppose we have 100 seconds, can

explore 10K nodes / sec
§  So can check 1M nodes per move
§  α-β reaches about depth 8 – decent

chess program

§  Guarantee of optimal play is gone
§  More plies makes a BIG difference
§  Use iterative deepening for an

anytime algorithm

? ? ? ?

-‐1	 -‐2	 4	 9	

4	

min	

max	

-‐2	 4	

Depth Matters
§  Evaluation functions are

always imperfect
§  The deeper in the tree the

evaluation function is
buried, the less the quality
of the evaluation function
matters

§  An important example of
the tradeoff between
complexity of features and
complexity of computation

[Demo:	 depth	 limited	 (L6D4,	
L6D5)]	

10/10/14

6

Heuristic Evaluation Function
§  Function which scores non-terminals

§  Ideal function: returns the utility of the position
§  In practice: typically weighted linear sum of features:

§  e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

What features would be good for Pacman?

Which algorithm?

QuickTime™ and a
GIF decompressor

are needed to see this picture.

α-β, δεπτη 4, σιµπλε εϖαλ φυν	

Which algorithm?

QuickTime™ and a
GIF decompressor

are needed to see this picture.

α-β, δεπτη 4, βεττερ εϖαλ φυν	

Why Pacman Starves

§  He knows his score will go
up by eating the dot now

§  He knows his score will go
up just as much by eating
the dot later on

§  There are no point-scoring
opportunities after eating
the dot

§  Therefore, waiting seems
just as good as eating

Iterative Deepening
Iterative deepening uses DFS as a

subroutine:

1.  Do a DFS which only searches for
paths of length 1 or less. (DFS gives
up on any path of length 2)

2.  If “1” failed, do a DFS which only
searches paths of length 2 or less.

3.  If “2” failed, do a DFS which only
searches paths of length 3 or less.
 ….and so on.

Why do we want to do this for multiplayer
games?

…
b

10/10/14

7

Stochastic Single-Player
§  What if we don’t know what the

result of an action will be? E.g.,
§  In solitaire, shuffle is unknown
§  In minesweeper, mine

locations

10 4 5 7

max

average
§  Can do expectimax search

§  Chance nodes, like actions
except the environment controls
the action chosen

§  Max nodes as before
§  Chance nodes take average

(expectation) of value of children

Which Algorithms?

QuickTime™ and a
GIF decompressor

are needed to see this picture.

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Expectimax Minimax

3 ply look ahead, ghosts move randomly

Maximum Expected Utility

§  Why should we average utilities? Why not minimax?

§  Principle of maximum expected utility: an agent should
chose the action which maximizes its expected utility,
given its knowledge
§  General principle for decision making
§  Often taken as the definition of rationality
§  We’ll see this idea over and over in this course!

§  Let’s decompress this definition…

Reminder: Probabilities
§  A random variable represents an event whose outcome is unknown
§  A probability distribution is an assignment of weights to outcomes

§  Example: traffic on freeway?
§  Random variable: T = whether there’s traffic
§  Outcomes: T in {none, light, heavy}
§  Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

§  Some laws of probability (more later):
§  Probabilities are always non-negative
§  Probabilities over all possible outcomes sum to one

§  As we get more evidence, probabilities may change:
§  P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
§  We’ll talk about methods for reasoning and updating probabilities later

What are Probabilities?

§  Averages over repeated experiments
§  E.g. empirically estimating P(rain) from historical observation
§  E.g. pacman’s estimate of what the ghost will do, given what it

has done in the past
§  Assertion about how future experiments will go (in the limit)
§  Makes one think of inherently random events, like rolling dice

§  Objectivist / frequentist answer:

§  Degrees of belief about unobserved variables
§  E.g. an agent’s belief that it’s raining, given the temperature
§  E.g. pacman’s belief that the ghost will turn left, given the state
§  Often learn probabilities from past experiences (more later)
§  New evidence updates beliefs (more later)

§  Subjectivist / Bayesian answer:

Uncertainty Everywhere
§  Not just for games of chance!

§  I’m sick: will I sneeze this minute?
§  Email contains “FREE!”: is it spam?
§  Tooth hurts: have cavity?
§  60 min enough to get to the airport?
§  Robot rotated wheel three times, how far did it advance?
§  Safe to cross street? (Look both ways!)

§  Sources of uncertainty in random variables:
§  Inherently random process (dice, etc)
§  Insufficient or weak evidence
§  Ignorance of underlying processes
§  Unmodeled variables
§  The world’s just noisy – it doesn’t behave according to plan!

10/10/14

8

Reminder: Expectations
§  We can define function f(X) of a random variable X

§  The expected value of a function is its average value,
weighted by the probability distribution over inputs

§  Example: How long to get to the airport?
§  Length of driving time as a function of traffic:

L(none) = 20, L(light) = 30, L(heavy) = 60
§  What is my expected driving time?

§  Notation: EP(T)[L(T)]
§  Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

§  E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
§  E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Utilities
§  Utilities are functions from outcomes (states of the

world) to real numbers that describe an agent’s
preferences

§  Where do utilities come from?
§  In a game, may be simple (+1/-1)
§  Utilities summarize the agent’s goals
§  Theorem: any set of preferences between outcomes can be

summarized as a utility function (provided the preferences meet
certain conditions)

§  In general, we hard-wire utilities and let actions emerge
(why don’t we let agents decide their own utilities?)

§  More on utilities soon…

Stochastic Two-Player
§  E.g. backgammon
§  Expectiminimax (!)

§  Environment is an
extra player that
moves after each
agent

§  Chance nodes take
expectations,
otherwise like minimax

Stochastic Two-Player

§  Dice rolls increase b: 21 possible rolls
with 2 dice
§  Backgammon ≈ 20 legal moves
§  Depth 4 = 20 x (21 x 20)3 = 1.2 x 109

§  As depth increases, probability of
reaching a given node shrinks
§  So value of lookahead is diminished
§  So limiting depth is less damaging
§  But pruning is less possible…

§  TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Expectimax Search Trees
§  What if we don’t know what the

result of an action will be? E.g.,
§  In solitaire, next card is unknown
§  In minesweeper, mine locations
§  In pacman, the ghosts act randomly

10 4 5 7

max

chance

§ Later, we’ll learn how to formalize the
underlying problem as a Markov
Decision Process

§  Can do expectimax search
§  Chance nodes, like min nodes,

except the outcome is uncertain
§  Calculate expected utilities
§  Max nodes as in minimax search
§  Chance nodes take average

(expectation) of value of children

Which Algorithm?

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Minimax: no point in trying

3 ply look ahead, ghosts move randomly

10/10/14

9

Which Algorithm?

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly

Expectimax Search
§  In expectimax search, we have a

probabilistic model of how the
opponent (or environment) will
behave in any state
§  Model could be a simple uniform

distribution (roll a die)
§  Model could be sophisticated and

require a great deal of computation
§  We have a node for every outcome

out of our control: opponent or
environment

§  The model might say that adversarial
actions are likely!

§  For now, assume for any state we
magically have a distribution to assign
probabilities to opponent actions /
environment outcomes

Expectimax Pseudocode
def value(s)

 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

def maxValue(s)

 values = [value(s’) for s’ in successors(s)]
 return max(values)

def expValue(s)

 values = [value(s’) for s’ in successors(s)]
 weights = [probability(s, s’) for s’ in successors(s)]
 return expectation(values, weights)

8 4 5 6

Expectimax for Pacman
§  Notice that we’ve gotten away from thinking that the

ghosts are trying to minimize pacman’s score
§  Instead, they are now a part of the environment
§  Pacman has a belief (distribution) over how they will

act
§  Quiz: Can we see minimax as a special case of

expectimax?
§  Quiz: what would pacman’s computation look like if

we assumed that the ghosts were doing 1-ply
minimax and taking the result 80% of the time,
otherwise moving randomly?

Expectimax for Pacman

Minimizing
Ghost

Random
Ghost

Minimax
Pacman

Expectimax
Pacman

Results from playing 5 games

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Won 5/5
Avg. Score:

493

Won 5/5
Avg. Score:

483

Won 5/5
Avg. Score:

503

Won 1/5
Avg. Score:

-303

Expectimax Pruning?

§  Not easy
§  exact: need bounds on possible values
§  approximate: sample high-probability branches

10/10/14

10

Expectimax Evaluation

§  Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

§  For minimax, evaluation function scale doesn’t matter
§  We just want better states to have higher evaluations

(get the ordering right)
§  We call this insensitivity to monotonic transformations

§  For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Mixed Layer Types
§  E.g. Backgammon
§  Expectiminimax

§  Environment is an
extra player that
moves after each
agent

§  Chance nodes take
expectations,
otherwise like minimax

Stochastic Two-Player

§  Dice rolls increase b: 21 possible rolls
with 2 dice
§  Backgammon ≈ 20 legal moves
§  Depth 4 = 20 x (21 x 20)3 1.2 x 109

§  As depth increases, probability of
reaching a given node shrinks
§  So value of lookahead is diminished
§  So limiting depth is less damaging
§  But pruning is less possible…

§  TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Multi-player Non-Zero-Sum Games

§  Similar to
minimax:
§  Utilities are now

tuples
§  Each player

maximizes their
own entry at
each node

§  Propagate (or
back up) nodes
from children

§  Can give rise to
cooperation and
competition
dynamically…

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

