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CSE 473: Artificial Intelligence 
Fall 2014 

Adversarial Search 
Dan Weld 

Based on slides from  

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer 
(best illustrations from ai.berkeley.edu) 1 

Outline 
§  Adversarial Search 

§ Minimax search 
§  α-β search 
§  Evaluation functions 
§  Expectimax  

§  Reminder: 
§  Project 1 due Monday 

Game Playing State-of-the-Art 
§  Checkers: Chinook ended 40-year-reign of human world champion 

Marion Tinsley in 1994. Used an endgame database defining perfect 
play for all positions involving 8 or fewer pieces on the board, a total of 
443,748,401,247 positions.  Checkers is now solved! 

Game Playing State-of-the-Art 
§  Chess: Deep Blue defeated human world champion Gary Kasparov in a 

six-game match in 1997. Deep Blue examined 200 million positions per 
second, used very sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  Current programs are 
even better, if less historic. 

Game Playing State-of-the-Art 
§  Othello: Human champions refuse to compete against computers, 

which are too good. 
§  Go: Human champions are beginning to be challenged by machines, 

though the best humans still beat the best machines on the full board. 
In go, b > 300, so need pattern knowledge bases and monte carlo 
search (UCT) 

§  Pacman: unknown 

Types of Games 

stratego 

Number of Players?  1, 2, …? 
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Deterministic Games 

§  Many possible formalizations, one is: 
§  States: S (start at s0) 
§  Players: P={1...N} (usually take turns) 
§  Actions: A (may depend on player / state) 
§  Transition Function: S x A à S 
§  Terminal Test: S à {t,f} 
§  Terminal Utilities: S x Pà R 

§  Solution for a player is a policy: S à A 

Zero-Sum Games 

§  Zero-Sum Games 
§  Agents have opposite utilities 

(values on outcomes) 
§  Lets us think of a single value 

that one maximizes and the 
other minimizes 

§  Adversarial, pure competition 

§  General Games 
§  Agents have independent utilities 

(values on outcomes) 
§  Cooperation, indifference, 

competition, & more are possible 
§  More later on non-zero-sum 

games 

Tic-tac-toe Game Tree 

You choose 

You choose 

You choose 

Opponent 

Opponent 

Deterministic Two-Player 
§  E.g. tic-tac-toe, chess, checkers 
§  Zero-sum games 

§  One player maximizes result 
§  The other minimizes result 

8 2 5 6 

max 

min 

§  Minimax search 
§  A state-space search tree 
§  Players alternate 
§  Choose move to position                                       

with highest minimax value                                        
= best achievable utility against best play 

Tic-tac-toe Game Tree Previously: Single-Agent Trees 

8	  

2	   0	   2	   6	   4	   6	  …	   …	  

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 
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Previously: Value of a State 
Non-‐Terminal	  States:	  

8	  

2	   0	   2	   6	   4	   6	  …	   …	   Terminal	  States:	  

Value	  of	  a	  state:	  
The	  best	  
achievable	  

outcome	  (u?lity)	  
from	  that	  state	  

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 

Adversarial Game Trees 

-‐20	   -‐8	   -‐18	   -‐5	   -‐10	   +4	  …	   …	   -‐20	   +8	  

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 

Minimax Values 

+8	  -‐10	  -‐5	  -‐8	  

States	  Under	  Agent’s	  Control:	  

Terminal	  States:	  

States	  Under	  Opponent’s	  Control:	  

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 

Adversarial Search (Minimax) 
§  Deterministic, zero-sum games: 

§  Tic-tac-toe, chess, checkers 
§  One player maximizes result 
§  The other minimizes result 

§  Minimax search: 
§  A state-space search tree 
§  Players alternate turns 
§  Compute each node’s minimax 

value: the best achievable 
utility against a rational 
(optimal) adversary 

8	   2	   5	   6	  

ma
x	  

mi
n	  2	   5	  

5	  

Terminal	  values:	  
part	  of	  the	  game	  	  

Minimax	  values:	  
computed	  recursively	  

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 

Minimax Implementation 

def	  min-‐value(state):	  
ini?alize	  v	  =	  +∞ 
for	  each	  successor	  of	  state:	  

v	  =	  min(v,	  max-‐
value(successor))	  

return	  v	  

	  

def	  max-‐value(state):	  
ini?alize	  v	  =	  -∞ 
for	  each	  successor	  of	  state:	  

v	  =	  max(v,	  min-‐
value(successor))	  

return	  v	  

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 

Concrete Minimax Example 

min 

max 
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Minimax Example 

min 

max 

A1 

Minimax Properties 

§  Time complexity? 

§  Space complexity? 

10 10 9 100 

max 

min 
§  O(bm) 

 

§  O(bm) 
 

§  For chess, b ∼ 35, m ∼ 100 
§  Exact solution is completely infeasible 
§  But, do we need to explore the whole tree? 

§  Optimal?  
§  Yes, against perfect player. Otherwise? 

 

Do We Need to Evaluate Every Node? α-β Pruning Example 

3 ≤2 ? 

≥3 

Progress of search… 

α-β Pruning 

§  General configuration 
§  α is MAX’s best choice on 

path to root 
§  If n becomes worse than 
α, MAX will avoid it, so 
can stop considering n’s 
other children 

§  Define β similarly for MIN 

Player 

Opponent 

Player 

Opponent 

α	


n 

Alpha-Beta Implementation 

def	  min-‐value(state	  ,	  α,	  β):	  
ini?alize	  v	  =	  +∞ 
for	  each	  successor	  of	  
state:	  
v	  =	  min(v,	  
value(successor,	  α,	  
β))	  

if	  v	  ≤	  α	  return	  v	  
β	  =	  min(β,	  v)	  

return	  v	  

	  

def	  max-‐value(state,	  α,	  β):	  
ini?alize	  v	  =	  -∞ 
for	  each	  successor	  of	  state:	  

v	  =	  max(v,	  
value(successor,	  α,	  
β))	  

if	  v	  ≥	  β	  return	  v	  
α	  =	  max(α,	  v)	  

return	  v	  

α: MAX’s best option on path to root 
β: MIN’s best option on path to root 

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 
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Alpha-Beta Pruning Example 

12 5 1 3 2 

8 

14 

≥8 

3 ≤2 ≤1 

3 

α is MAX’s best alternative here or above 
β is MIN’s best alternative here or above 

α=-∞ 	

β=+∞	


α=-∞ 
β=+∞	


α=-∞ 
β=+ ∞	


α=-∞ 
β=3 

α=-∞ 
β=3 

α=-∞ 
β=3 

α=-∞ 
β=3 

α=8 
β=3 

α=3 
β=+∞	


α=3 
β=+∞	


α=3 
β=+∞	


α=3 
β=+∞	


α=3 
β=2 

α=3 
β=+∞	
 α=3 

β=14 
α=3 
β=5 

α=3 
β=1 

At max node:  
   Prune if v≥β;  
   Update α≤ 

At min node:  
   Prune if α≤v;  
   Update β 

Alpha-Beta Pruning Example 

α is MAX’s best alternative here or above 
β is MIN’s best alternative here or above 

2 3 5 9 
5 6 2 1 7 4 0 

Alpha-Beta Pruning Example 

α is MAX’s best alternative here or above 
β is MIN’s best alternative here or above 

2 3 5 
2 1 0 

Alpha-Beta Pruning Properties 
§  This pruning has no effect on final result at the root 

§  Values of intermediate nodes might be wrong! 
§  but, they are bounds 

§  Good child ordering improves effectiveness of pruning 

§  With “perfect ordering”: 
§  Time complexity drops to O(bm/2) 
§  Doubles solvable depth! 
§  Full search of, e.g. chess, is still hopeless… 

Resource Limits 
§  Problem: In realistic games, cannot 

search to leaves! 
§  Solution: Depth-limited search 

§  Instead, search only to a limited depth 
in the tree 

§  Replace terminal utilities with an 
evaluation function for non-terminal 
positions 

§  Example: 
§  Suppose we have 100 seconds, can 

explore 10K nodes / sec 
§  So can check 1M nodes per move 
§  α-β reaches about depth 8 – decent 

chess program 

§  Guarantee of optimal play is gone 
§  More plies makes a BIG difference 
§  Use iterative deepening for an 

anytime algorithm 

? ? ? ? 

-‐1	   -‐2	   4	   9	  

4	  

min	  

max	  

-‐2	   4	  

Depth Matters 
§  Evaluation functions are 

always imperfect 
§  The deeper in the tree the 

evaluation function is 
buried, the less the quality 
of the evaluation function 
matters 

§  An important example of 
the tradeoff between 
complexity of features and 
complexity of computation 

[Demo:	  depth	  limited	  (L6D4,	  
L6D5)]	  
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Heuristic Evaluation Function 
§  Function which scores non-terminals 

§  Ideal function: returns the utility of the position 
§  In practice: typically weighted linear sum of features: 

§  e.g. f1(s) = (num white queens – num black queens), etc. 

Evaluation for Pacman 

What features would be good for Pacman? 

Which algorithm? 

QuickTime™ and a
GIF decompressor

are needed to see this picture.

α-β, δεπτη 4, σιµπλε εϖαλ φυν	


Which algorithm? 

QuickTime™ and a
GIF decompressor

are needed to see this picture.

α-β, δεπτη 4, βεττερ εϖαλ φυν	


Why Pacman Starves 

§  He knows his score will go 
up by eating the dot now 

§  He knows his score will go 
up just as much by eating 
the dot later on 

§  There are no point-scoring 
opportunities after eating 
the dot 

§  Therefore, waiting seems 
just as good as eating 

Iterative Deepening 
Iterative deepening uses DFS as a 

subroutine: 
 

1.  Do a DFS which only searches for 
paths of length 1 or less.  (DFS  gives 
up on any path of length 2) 

2.  If “1” failed, do a DFS which only 
searches paths of length 2 or less. 

3.  If “2” failed, do a DFS which only 
searches paths of length 3 or less. 
    ….and so on. 

Why do we want to do this for multiplayer 
games? 

…
b 
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Stochastic Single-Player 
§  What if we don’t know what the 

result of an action will be? E.g., 
§  In solitaire, shuffle is unknown 
§  In minesweeper, mine 

locations 

10 4 5 7 

max 

average 
§  Can do expectimax search 

§  Chance nodes, like actions 
except the environment controls 
the action chosen 

§  Max nodes as before 
§  Chance nodes take average 

(expectation) of value of children 

Which Algorithms? 

QuickTime™ and a
GIF decompressor

are needed to see this picture.

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Expectimax Minimax 

3 ply look ahead, ghosts move randomly 

Maximum Expected Utility 

§  Why should we average utilities?  Why not minimax? 

§  Principle of maximum expected utility: an agent should 
chose the action which maximizes its expected utility, 
given its knowledge 
§  General principle for decision making 
§  Often taken as the definition of rationality 
§  We’ll see this idea over and over in this course! 

§  Let’s decompress this definition… 

Reminder: Probabilities 
§  A random variable represents an event whose outcome is unknown 
§  A probability distribution is an assignment of weights to outcomes 

§  Example: traffic on freeway? 
§  Random variable: T = whether there’s traffic 
§  Outcomes: T in {none, light, heavy} 
§  Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20 

§  Some laws of probability (more later): 
§  Probabilities are always non-negative 
§  Probabilities over all possible outcomes sum to one 

§  As we get more evidence, probabilities may change: 
§  P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60 
§  We’ll talk about methods for reasoning and updating probabilities later 

What are Probabilities? 

§  Averages over repeated experiments 
§  E.g. empirically estimating P(rain) from historical observation 
§  E.g. pacman’s estimate of what the ghost will do, given what it 

has done in the past 
§  Assertion about how future experiments will go (in the limit) 
§  Makes one think of inherently random events, like rolling dice 

§  Objectivist / frequentist answer: 
 

§  Degrees of belief about unobserved variables 
§  E.g. an agent’s belief that it’s raining, given the temperature 
§  E.g. pacman’s belief that the ghost will turn left, given the state 
§  Often learn probabilities from past experiences (more later) 
§  New evidence updates beliefs (more later) 

§  Subjectivist / Bayesian answer: 
 

Uncertainty Everywhere 
§  Not just for games of chance! 

§  I’m sick: will I sneeze this minute? 
§  Email contains “FREE!”: is it spam? 
§  Tooth hurts: have cavity? 
§  60 min enough to get to the airport? 
§  Robot rotated wheel three times, how far did it advance? 
§  Safe to cross street? (Look both ways!) 

§  Sources of uncertainty in random variables: 
§  Inherently random process (dice, etc) 
§  Insufficient or weak evidence 
§  Ignorance of underlying processes 
§  Unmodeled variables 
§  The world’s just noisy – it doesn’t behave according to plan! 
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Reminder: Expectations 
§  We can define function f(X) of a random variable X 

§  The expected value of a function is its average value, 
weighted by the probability distribution over inputs 

§  Example: How long to get to the airport? 
§  Length of driving time as a function of traffic: 

L(none) = 20, L(light) = 30, L(heavy) = 60 
§  What is my expected driving time? 

§  Notation: EP(T)[ L(T) ] 
§  Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25} 

§  E[ L(T) ] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy) 
§  E[ L(T) ] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35 

Utilities 
§  Utilities are functions from outcomes (states of the 

world) to real numbers that describe an agent’s 
preferences 

§  Where do utilities come from? 
§  In a game, may be simple (+1/-1) 
§  Utilities summarize the agent’s goals 
§  Theorem: any set of preferences between outcomes can be 

summarized as a utility function (provided the preferences meet 
certain conditions) 

§  In general, we hard-wire utilities and let actions emerge 
(why don’t we let agents decide their own utilities?) 

§  More on utilities soon… 

Stochastic Two-Player 
§  E.g. backgammon 
§  Expectiminimax (!) 

§  Environment is an 
extra player that 
moves after each 
agent 

§  Chance nodes take 
expectations, 
otherwise like minimax 

Stochastic Two-Player 

§  Dice rolls increase b: 21 possible rolls 
with 2 dice 
§  Backgammon ≈ 20 legal moves 
§  Depth 4 = 20 x (21 x 20)3 = 1.2 x 109 

§  As depth increases, probability of 
reaching a given node shrinks 
§  So value of lookahead is diminished 
§  So limiting depth is less damaging 
§  But pruning is less possible… 

§  TDGammon uses depth-2 search + 
very good eval function + 
reinforcement learning: world-
champion level play 

Expectimax Search Trees 
§  What if we don’t know what the 

result of an action will be? E.g., 
§  In solitaire, next card is unknown 
§  In minesweeper, mine locations 
§  In pacman, the ghosts act randomly 

10 4 5 7 

max 

chance 

 
§ Later, we’ll learn how to formalize the 
underlying problem as a Markov 
Decision Process 

§  Can do expectimax search 
§  Chance nodes, like min nodes, 

except the outcome is uncertain 
§  Calculate expected utilities 
§  Max nodes as in minimax search 
§  Chance nodes take average 

(expectation) of value of children 

Which Algorithm? 

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Minimax: no point in trying 

3 ply look ahead, ghosts move randomly 
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Which Algorithm? 

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Expectimax: wins some of the time 

3 ply look ahead, ghosts move randomly 

Expectimax Search 
§  In expectimax search, we have a 

probabilistic model of how the 
opponent (or environment) will 
behave in any state 
§  Model could be a simple uniform 

distribution (roll a die) 
§  Model could be sophisticated and 

require a great deal of computation 
§  We have a node for every outcome 

out of our control: opponent or 
environment 

§  The model might say that adversarial 
actions are likely! 

§  For now, assume for any state we 
magically have a distribution to assign 
probabilities to opponent actions / 
environment outcomes 

Expectimax Pseudocode 
def value(s) 

 if s is a max node return maxValue(s) 
 if s is an exp node return expValue(s) 
 if s is a terminal node return evaluation(s) 

 
def maxValue(s) 

 values = [value(s’) for s’ in successors(s)] 
 return max(values) 

 
def expValue(s) 

 values = [value(s’) for s’ in successors(s)] 
 weights = [probability(s, s’) for s’ in successors(s)] 
 return expectation(values, weights) 

8 4 5 6 

Expectimax for Pacman 
§  Notice that we’ve gotten away from thinking that the 

ghosts are trying to minimize pacman’s score 
§  Instead, they are now a part of the environment 
§  Pacman has a belief (distribution) over how they will 

act 
§  Quiz: Can we see minimax as a special case of 

expectimax? 
§  Quiz: what would pacman’s computation look like if 

we assumed that the ghosts were doing 1-ply 
minimax and taking the result 80% of the time, 
otherwise moving randomly? 

Expectimax for Pacman 

Minimizing 
Ghost 

Random 
Ghost 

Minimax 
Pacman 

Expectimax 
Pacman 

Results from playing 5 games 

Pacman does depth 4 search with an eval function that avoids trouble 
Minimizing ghost does depth 2 search with an eval function that seeks Pacman 

Won 5/5 
Avg. Score: 

493 

Won 5/5 
Avg. Score: 

483 

Won 5/5 
Avg. Score: 

503 

Won 1/5 
Avg. Score: 

-303 

Expectimax Pruning? 

§  Not easy 
§  exact: need bounds on possible values 
§  approximate: sample high-probability branches 
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Expectimax Evaluation 

§  Evaluation functions quickly return an estimate for a 
node’s true value (which value, expectimax or minimax?) 

§  For minimax, evaluation function scale doesn’t matter 
§  We just want better states to have higher evaluations 

(get the ordering right) 
§  We call this insensitivity to monotonic transformations 

§  For expectimax, we need magnitudes to be meaningful 

0 40 20 30 x2 0 1600 400 900 

Mixed Layer Types 
§  E.g. Backgammon 
§  Expectiminimax 

§  Environment is an 
extra player that 
moves after each 
agent 

§  Chance nodes take 
expectations, 
otherwise like minimax 

Stochastic Two-Player 

§  Dice rolls increase b: 21 possible rolls 
with 2 dice 
§  Backgammon ≈ 20 legal moves 
§  Depth 4 = 20 x (21 x 20)3  1.2 x 109 

§  As depth increases, probability of 
reaching a given node shrinks 
§  So value of lookahead is diminished 
§  So limiting depth is less damaging 
§  But pruning is less possible… 

§  TDGammon uses depth-2 search + 
very good eval function + 
reinforcement learning: world-
champion level play 

Multi-player Non-Zero-Sum Games 

§  Similar to 
minimax: 
§  Utilities are now 

tuples 
§  Each player 

maximizes their 
own entry at 
each node 

§  Propagate (or 
back up) nodes 
from children 

§  Can give rise to 
cooperation and 
competition 
dynamically… 

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5 


