CSE 473: Intro. to Artificial Intelligence

Constraint Satisfaction Problems

Presenter: Galen Andrew

[Theseslides werecreated by Dan Klein and Pieter Abbeel forCS188IntrotoAl at UCBerkeley. All CS188materials areavailableat http//aiberkeley.edu]

ConstraintSatisfaction Problems

Announcements

= Prof. Weld away today and Wednesday

= | will bebeginning the lecture series on Constraint Satisfaction Problems
(CSPs)

= Prof. Luke Zettlemoyer will continue on Wednesday.
= Project 1: Search

= Due next week, Monday 10/13 at 1159 PM.

= Start early and ask questions. It's longer than most!

= Come to TA office hours with questions or general help
= Galen: Wed 1:00-300
®* Nao: Tue 1:30-230, Thu 1:00-2:00
= Travis: Fri 3:30-4:30
= Jeff: Wed 10:30-11:30

What is Search For?

ConstraintSatisfaction Problems

Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

Planning: sequences of actions

= The path to the goal is theimportant thing
= Paths have various costs, depths

= Assume little about problem structure

Identification: assignments to variables

= The goal itself isimportant, notthe path

= All paths at the same depth (for some formulations)

= CSPs are structured identification problems n

CSP Examples

Standard search problems:

= State isa “black box”: arbitrary data structure
* Goal test canbe any function over states

= Successor function canalso be anything

Constraint satisfaction problems (CSPs):

= Aspecial subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal test is aset of constraints specifying allowable
combinations of values for subsets of variables

Making use of CSP formulation allows for optimized
algorithms

* Typical example of trading generality forutility (in
this case, speed)

Tasmania

Example: Map Coloring Example: N-Queens

iables: WA, NT, Q, NSW, V, SA, T .
Variables: WA, NT, Q, NSW, V, SA, = Formulation 1: J

= Variables: Xj;
= Domains: {0,1}

= Constraints .

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA, N'T) € {(red, green), (red, blue), ...} Vi, gk (Xij, Xa) € {(0,0),(0,1),(1,0)}

Vi, g, k(X5 X)) € {(0,0),(0,1),(1,0)} S Xy=N
Vi, g,k (Xij, Xitrj+4) € {(0,0),(0,1),(1,0)} &

Vi, gk (Xij, Xitr,j—k) € {(0,0),(0,1),(1,0)}

Solutions are assignments satisfying all
constraints, e.g.:
{WwA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Example: N-Queens Constraint Graphs

= Formulation 2: Q1 @

® Variables: Q Qo '
Q3
= Domains: {1,2,3,...N} Qa B ®‘ ‘

()
= Constraints: @‘°®

Implicit: Vi,j non-threatening(Q;, Q;)

Explcit: (Q1,Q2) € {(1,3),(1,4),...}

Constraint Graphs Example: Cryptarithmetic
= Binary CSP: each constraint relates (at most) two . i . ;Q—T
variables @ o variables TwWO 4. SEND
@ ‘ FTUW RO X; Xo X3 + TWO < | IHE
= Binary constraint graph: nodes are variables, arcs @ = Domains: FOUR L
{0,1,2,3,4,5,6,7,8,9}

show constraints

«i@

= Constraints:
alldiff(F, T, U, W, R, O)

General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

©

O4+0=R+10-X;

Example: Sudoku Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting

= Variables: g z T
f”aE:h (open) square line drawings of solid polyhedra as 3D
= Domains: Objeqs .
P /1T g N> . 2.9 = An early example of an Al computation
8|4 1]6] 1 4 + Constraints: posed asa CsP
5 11T\
1 3|8 9 9-way alldiff for each column)\7
6 2 5 ; ? 9-way alldiff for each row
,) = Approach:
Z > 7 9-way alldiff for each region = Each intersection isa variable
=13 =18 / (or can have a bunch of = Adjacent intersections impose constraints
> / pairwise inequality gnl e:_ch otherph ically realizable3D
i = Solutions are physically realizable
3 constraints) interpretations

Varieties of CSPs Varieties of CSP Variables

= Discrete Variables

= Finite domains
= Size d means O(d") complete assignments
* E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)

= Infinite domains (integers, strings, etc.)
* E.g., job scheduling, variables are start/end times for eachjob
* Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by linear
program methods (see CSE 521 for abit of LP theory)

Varieties of CSP Constraints Real-World CSPs

= Assignment problems: e.g., who teaches what class

= Varieties of Constraints N - X >
= Unary constraints involve asingle variable (equivalent to = Timetabling problems: e.g., which class is offered when and where?

reducing domains), e.g.: = Hardware configuration (VLSI layout)

SA # green = Transportation scheduling
= Binary constraints involve pairs of variables, e.g.: = Factory scheduling
SA #= WA = Circuit layout

= Fault diagnosis
= ... lots more!

= Higher-order constraints involve 3or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g.,redis better than green
= Often representable by a cost for eachvariable assignment
» Gives constrained optimization problems

= (We'll ignore these until we get to Bayes’ nets) = Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

Search Methods

Standard search formulation of CSPs

States defined by the values assigned
so far (partial assignments)

Initial state: the empty assignment, {}
Successor function: assign a value to an
unassigned variable

Goal test: the current assignment is
complete and satisfies all constraints

We'll start with the straightforward,
naive approach, then improve it

Video of Demo Coloring -- DFS

= What would DFS do?

= What would BFS do?

= What problems does naive search have?

Backtracking Search

[Demo: coloring - dfs]

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fixordering
= e, [WA =red then NT=green] sameas [NT = green then WA= red]
= Only need to consider assignments to a single variableat each step

Idea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check theconstrair
= “Incremental goal test”

Depth-first search with these two improvements

is called backtracking search

Can solve n-queens for n ~ 25

Backtracking Example

Backtracking Search

— T

e ™

Video of Demo Coloring — Backtracking

function BACKTRACKING-SEARCH{rsp) returns solution failure
return RECURSIVE-BACKTRACKING({ }, ¢

STV E- BACK TRACKING

is complete the

CT-UNASSIGNED- VARIABLE(VARIABLE:

¢ in ORDER-DOMAIN-VALUES(v

if valuee is consistent with assignment given CONSTRAINTS[csp] then
add {var = value) to as

et esp) returns soln /failure

on [k

1

assignment, csp)

— RECURSIVE-BACKTRACK

it # fa

v then return
1c} from assign

remove [
return fuilire

= What are the choice points?

[Demo: coloring --backtracking]

Improving Backtracking

Filtering

= General-purpose ideas give huge gains in speed
= Ordering:

= Which variable should be assigned next?

= In what order should its values be tried?

= Filtering: Can we detect inevitable failure early?

= Structure: Can we exploit the problem structure?

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
NTl Q'
WA
SA fysw
v

WA NT Q NSW v SA

CE I I I ICE]

[Demo: coloring — forward checking]

Video of Demo Coloring—Backtracking with Forward Checking

Filtering: Constraint Propagation

Consistency of a Single Arc

= Forward checking only propagates information from assigned to unassigned
= |t doesn't catch when two unassigned variables have no consistent assignment:

WA NT Q Nsw v SA
‘ nr T I ICET ICET IR Irer 1
A Tww (ew] STE[ESEESE[E] S]
Y (w] w[Eawe SEESE] W]

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= (Constraint propagation: reason from constraint to constraint

Arc Consistency of an Entire CSP

= AnarcX — Y is consistent iff for every xin the tail there is some y in the head which
could be assigned without violating a constraint

NT WA NT Q NSW v SA
‘ gy (EEm] TEESEENE[EE]
v W

Delete from the taill

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

AC-3 algorithm for Arc Consistency

= A simple form of propagation makes sure all arcs are consistent:

‘ - WA NT Q NSW v SA
% Lusw
v

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

What'’s the downside of enforcing arc consistency?

Video of Demo Arc Consistency — CSP Applet — n Queens

¥ CSP with variables { X), ¥ .
e, a quene of ares, initially all the arcs in e5p

s not empty do

guetie)
vEs(X,.] then

for each X, in NEGHEORS[X,] do
add [Xy, X} ta g
IncoustsTENT-VALUES| X;, ;) returns true iff succesds
for each +in DoAAN]Y] do
ifno

in DOMAIN|X,] allows (1,4] to satisfy the constraint X, — X,

e - fram DoMAINX] wed o troe

return ©

= Runtime: O(n?d?), @n be reduced to O(n?d?)
= .. butdetecting all possiblefuture problemsis NP-hard —why?

[Demo: CSP applet (made available by aispace.org) --n-queens]

Video of Demo Coloring—Backtracking with Forward Checking -

Limitations of Arc Consistency Complex Graph

= After enforcing arc O
consistency:

= Can have onesolution left c’ 0
= Can have multiple solutions left

= Can have no solutions left (and ‘I’
not know it) ‘ I

= Arc consistency still runs What went
. . wrong here?
inside a backtracking search!

[Demo: coloring - forward checking]
[Demo: coloring - arc consistency]

Video of Demo Coloring—Backtracking with Arc Consistency —

Complex Graph Ordering
E =
S
> _
Ordering: Minimum Remaining Values Ordering: Maximum Degree
= Variable Ordering: Minimum remaining values (MRV): = Tie-breaker among MRV variables

* Choose the variable with the fewest legal left values in its domain = What is the very first state to color? (All have 3 values remaining.)

= Maximum degree heuristic:

‘_L’: = Choose the variable participating in the most constraints on remaining
variables

S,

= Why most rather than fewest constraints?

= Why min rather than max?
= Also called “most constrained variable”
= “Fail-fast” ordering

Ordering: Least Constraining Value Rationale for MRV, MD, LCV

= Value Ordering: Least Constraining Value & = We want to enter the most promising branch, but we also want
= Given a choice of variable, choose the least ‘_‘%

to detect failure quickl
constraining value ‘. q Y
= |.e, the one that rules out the fewest values in

& = MRV+MD:
the remaining variables ‘ % = Choose the variable that is most likely to cause failure
= Note that it may take some computation to . . P .
determine this! (E.g., rerunning filtering) = It must be assigned at some point, so if it is doomed to fail, better to
find out soon

= Why least rather than most? . LCV:
I 1 = We hope our early value choices do not doom us to failure

* Combining these f)rderlng ideas makes N = Choosethe value that is most likely to succeed
1000 queens feasible \

