CSE 473: Intro. to Artificial Intelligence

Constraint Satisfaction Problems

Presenter: Galen Andrew

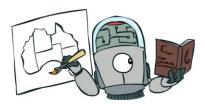
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Introto Al at UCBerkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

- Prof. Weld away today and Wednesday
 - I will be beginning the lecture series on Constraint Satisfaction Problems (CSPs)
 - Prof. Luke Zettlemoyer will continue on Wednesday.
- Project 1: Search
 - Due next week, Monday 10/13 at 11 59 PM.
 - Start early and ask questions. It's longer than most!
- Come to TA office hours with questions or general help

 - Galen: Wed 1:00-3:00
 Nao: Tue 1:30-2:30, Thu 1:00-2:00
 - Travis: Fri 3:30-4:30
 - Jeff: Wed 10:30-11:30

Constraint Satisfaction Problems



What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Assume little about problem structure
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are structured identification problems

Constraint Satisfaction Problems

- Standard search problems:
 State is a "black box": arbitrary data structure
 Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 A special subset of search problems
 State is defined by variables X_I with values from a domain D (sometimes D depends on I)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Making use of CSP formulation allows for optimized algorithms
 - Typical example of trading generality for utility (in this case, speed)

CSP Examples

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different

Implicit: WA \neq NT

 $\textbf{Explicit: (WA,NT)} \in \{(\text{red},\text{green}),(\text{red},\text{blue}),\ldots\}$

 Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Example: N-Queens

Formulation 1:

• Variables: X_{ij} ■ Domains: {0,1}

Constraints

 $\forall i,j,k \ (X_{ij},X_{ik}) \in \{(0,0),(0,1),(1,0)\}$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$ $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$

 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

 $\sum_{i,j} X_{ij} = N$

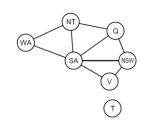
Example: N-Queens

- Formulation 2:
 - lacktriangle Variables: Q_k
 - Domains: $\{1, 2, 3, \dots N\}$
 - Constraints:

Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)

 $(Q_1,Q_2) \in \{(1,3),(1,4),\ldots\}$ Explicit:

Constraint Graphs



Constraint Graphs

- Binary CSP: each constraint relates (at most) two
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables: $F\ T\ U\ W\ R\ O\ X_1\ X_2\ X_3$
- Domains:
- $\{0,1,2,3,4,5,6,7,8,9\}$
- Constraints:

 $\mathsf{alldiff}(F, T, U, W, R, O)$

 $O + O = R + 10 \cdot X_1$

. . .

Example: Sudoku

- Variables:
 Each (open) square
- {1,2,...,9}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

- Approach:

 Each intersection is a variable

 Adjacent intersections impose constraints on each other

 Solutions are physically realizable 3D interpretations

Varieties of CSPs

Varieties of CSP Variables

- Discrete Variables
 - Finite domains
 - Size d means O(dⁿ) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 Linear constraints solvable, nonlinear undecidable
- Continuous variables

 - E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by linear program methods (see CSE 521 for a bit of LP theory)

Varieties of CSP Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

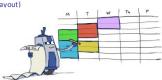
 $\mathsf{SA} \neq \mathsf{green}$

- Binary constraints involve pairs of variables, e.g.: $SA \neq WA$
- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment Gives constrained optimization problems

 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration (VLSI layout)
- Transportation scheduling
- Factory scheduling
- Circuit layout Fault diagnosis
- ... lots more!



Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

What would DFS do?

• What problems does naïve search have?

[Demo: coloring - dfs]

Video of Demo Coloring -- DFS

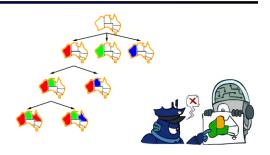
Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time

 - Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT= green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 I.e. consider only values which do not conflict previous assimments
 Might have to do some computation to check the constrair
 "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search
- Can solve n-queens for $n \approx 25$

Backtracking Example



Backtracking Search

function Backtracking-Search(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({}, csp)
function RECURSIVE-BACKTRACKING({}, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var—SELECT-UNASSIGNED-VARHABLE(VARHABLES[sep], assignment, csp)
for each value in ORDEE-DOMAIN-VALUES[sep assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var=value} to assignment
result—RECURSIVE-BACKTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var=value} from assignment
return failure

• What are the choice points?

[Demo: coloring -- backtracking]

Video of Demo Coloring - Backtracking

Improving Backtracking

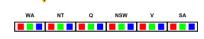
- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

• Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

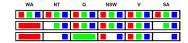


[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking

Filtering: Constraint Propagation

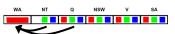
- Forward checking only propagates information from assigned to unassigned
- It doesn't catch when two unassigned variables have no consistent assignment:



- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of a Single Arc

An arc $X \to Y$ is consistent iff for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint



• Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment • What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

AC-3 algorithm for Arc Consistency

function AC-3(csp) returns the CSP, possibly with reduced domain inputs: csp, a binary CSP with variables $\{X_1, X_2, ..., X_n\}$ local variables: queue, a queue of arcs, initially all the arcs in cspwhile queue is not empty do (X_i, X_j) —REMOVE-FIRST(queue) if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then for each X_i in NEIGHBORS[X_i] do add (X_k, X_i) to queue function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds removed—false for each x in Domans[X] do for each x in Domans[X] allows (x,y) to satisfy the constraint $X_i \leftarrow X_j$ then delete x from Domans[X], x removed—true restored—true

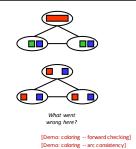
- Runtime: O(n2d3), can be reduced to O(n2d2)
- ... but detecting all possible future problems is NP-hard –why?

[Demo: CSP applet (made available by aispace.org) - n-queens]

Video of Demo Arc Consistency - CSP Applet - n Queens

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!



Video of Demo Coloring – Backtracking with Forward Checking -Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Maximum Degree

- Tie-breaker among MRV variables
 - What is the very first state to color? (All have 3 values remaining.)
- Maximum degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

• Why most rather than fewest constraints?

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Rationale for MRV, MD, LCV

- We want to enter the most promising branch, but we also want to detect failure quickly
- MRV+MD:
 - Choose the variable that is most likely to cause failure
 - It must be assigned at some point, so if it is doomed to fail, better to find out soon
- LCV:
 - We hope our early value choices do not doom us to failure
 - Choose the value that is most likely to succeed