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CSE 473: Artificial Intelligence 
Autumn 2014 

Problem Spaces & Search 
 

With slides from 	


Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer	



Dan Weld	



Logistics 
§  Piazza 
§  PS0 Due for optional grading end of Wed 10/1 
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Outline 

§  Search Problems 

§  Uninformed Search Methods 
§  Depth-First Search 
§  Breadth-First Search 
§  Uniform-Cost Search 

§  Heuristic Search Methods 
§  Best First / Greedy Search 

Agent vs. Environment 

§  An agent is an entity that 
perceives and acts. 

§  A rational agent selects 
actions that maximize its 
utility function.   

§  Characteristics of the 
percepts, environment, and 
action space dictate 
techniques for selecting 
rational actions. 

Agent 

Sensors 

? 

Actuators 

E
nvironm

ent 

Percepts 

Actions 

Actions?  Percepts? 
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Actions?  Percepts? 
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Recommender System 
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Types of Agents 

§  Reflex 

§  Goal oriented 

§  Utility-based 
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Famous Reflex Agents 

Goal Based Agents 

§  Plan ahead 
§  Ask “what if” 

§  Decisions based on 
(hypothesized) 
consequences of actions 

§  Must have a model of how 
the world evolves in 
response to actions 

§  Act on how the world 
WOULD BE 
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Search thru a  

§  Set of states 
§ Operators [and costs] 
§  Start state 
§ Goal state [test] 

• Path: start ⇒ a state satisfying goal test 
   [May require shortest path] 
   [Sometimes just need a state that passes test] 

•  Input: 

• Output: 

Problem Space (aka State Space)  

Example: Simplified Pac-Man 
§  Input: 

§  A state space 

§  A successor function 

§  A start state  

§  A goal test 

§  Output: 

“N”, 1.0 

“E”, 1.0 

Ex: Route Planning: Arad à Bucharest 

§  Input: 
§  Set of states 

§  Operators [and costs] 

§  Start state 

§  Goal state (test) 

§  Output: 
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Ex: Blocks World 
§  Input: 

§  Set of states 

§ Operators [and costs] 

§  Start state 

§ Goal state (test) 

§ Output: 

Partially specified plans 

Plan modification operators 

The null plan (no actions) 

A plan which provably achieves 

The desired world configuration 
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Multiple Problem 
Spaces 

Real World 
 States of the world (e.g. block configurations)    
 Actions (take one world-state to another) 

• Problem Space 1 
•  PS states =  

•  models of world states 
•  Operators =  

•  models of actions 

Robot’s Head 
• Problem Space 2 
•  PS states =  

•  partially spec. plan 
•  Operators =  

•  plan modificat’n ops 

Algebraic Simplification 
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§  Input: 
§  Set of states 

§  Operators [and costs] 

§  Start state 

§  Goal state (test) 
 

§ Output: 

State Space Graphs 

§  State space graph: 
§  Each node is a state 
§  The successor function 

is represented by arcs 
§  Edges may be labeled 

with costs 
§  We can rarely build this 

graph in memory (so we 
don’t) 
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r 

Ridiculously tiny search graph 
for a tiny search problem 

State Space Sizes? 

§  Search Problem: 
  Eat all of the food 

§  Pacman positions: 
  10 x 12 = 120 

§  Pacman facing: 
  up, down, left, right 

§  Food configurations: 230 

§  Ghost1 positions: 12 
§  Ghost 2 positions: 11 
 

10 x 12 = 120 

up, down, left, right 
230 

                             12 
                             11 

120 x 4 x 230 x 12 x 11 = 6.8 x 1013  
19 

Search Methods 
§  Blind Search 

§  Local Search 
§  Informed Search 
§  Constraint Satisfaction 
§  Adversary Search 

•  Depth first search 
•  Breadth first search 
•  Iterative deepening search 
•  Uniform cost search 
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Search Trees 

§  A search tree: 
§  Start state at the root node 
§  Children correspond to successors 
§  Nodes contain states, correspond to PLANS to those states 
§  Edges are labeled with actions and costs 
§  For most problems, we can never actually build the whole tree 

“E”, 1.0 “N”, 1.0 

Example: Tree Search 
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State Graph: 

What is the search tree? 

State Graphs vs. Search Trees 

S 
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We construct both 
on demand – and 
we construct as 
little as possible. 

Each NODE in in the 
search tree denotes an 
entire PATH in the 
problem graph. 

States vs. Nodes 
§  Nodes in state space graphs are problem states 

§  Represent an abstracted state of the world 
§  Have successors, can be goal / non-goal, have multiple predecessors 

§  Nodes in search trees are plans 
§  Represent a plan (sequence of actions) which results in the node’s state 
§  Have a problem state and one parent, a path length, a depth & a cost 
§  The same problem state may be achieved by multiple search tree nodes 

Depth 5 

Depth 6 

Parent 

Node 

Search Tree Nodes 
Problem States 

Action 

Building Search Trees 

§  Search: 
§  Expand out possible plans 
§ Maintain a fringe of unexpanded plans 
§  Try to expand as few tree nodes as possible 

General Tree Search 

§  Important ideas: 
§  Fringe 
§  Expansion 
§  Exploration strategy 

             which fringe node to expand next? 

Detailed pseudocode is 
in the book! 
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Review? Depth First Search 

S 
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Strategy: expand 
deepest node first 

Implementation: 
Fringe is a LIFO 
queue (a stack) 

Review? Depth First Search 
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Expansion ordering: 

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G) 
 

Review? Breadth First Search 
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Strategy: expand 
shallowest node 
first 
Implementation: 
Fringe is a FIFO 
queue 

Review? Breadth First Search 
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Search 

Tiers 

Expansion order: 
(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G) 

Search Algorithm Properties 

§  Complete?  Guaranteed to find a solution if one exists? 
§  Optimal?    Guaranteed to find the least cost path? 
§  Time complexity? 
§  Space complexity? 
 

Variables: 

n Number of states in the problem 
b The maximum branching factor B 

(the maximum number of successors for a state) 
C* Cost of least cost solution 
d Depth of the shallowest solution 
m Max depth of the search tree 

DFS 

§  Infinite paths make DFS incomplete… 
§  How can we fix this? 
§  Check new nodes against path from S 

§  Infinite search spaces still a problem 

Algorithm Complete Optimal Time Space 
DFS Depth First 

Search 
N N O(BLMAX) O(LMAX) 

START 

GOAL a 

b 

No No Infinite Infinite 
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DFS 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking Y if finite N O(bm) O(bm) 

…
b 1 node 

b nodes 

b2 nodes 

bm nodes 

m tiers 

* Or graph search – next lecture. 

BFS 

§  When is BFS optimal? 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking 

BFS 

N unless 
     finite N O(bm) O(bm) 

Y Y O(bd) O(bd) 

…
b 1 node 

b nodes 

b2 nodes 

bm nodes 

d tiers 

bd nodes 

34 

Memory a Limitation? 
§ Suppose: 

• 4 GHz CPU     
• 32 GB main memory 
• 100 instructions / expansion 
• 5 bytes / node 

• 40 M expansions / sec 
• Memory filled in 160 sec   …  3 min 

Comparisons 

§  When will BFS outperform DFS? 

§  When will DFS outperform BFS? 

Iterative Deepening 
Iterative deepening uses DFS as a subroutine: 
 

1.  Do a DFS which only searches for paths of 
length 1 or less.   

2.  If “1” failed, do a DFS which only searches paths 
of length 2 or less. 

3.  If “2” failed, do a DFS which only searches paths 
of length 3 or less. 
    ….and so on. 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking 

BFS 

ID 

Y N O(bm) O(bm) 

Y Y O(bd) O(bd) 

Y Y O(bd) O(bd) 

…
b 

37 

Cost of Iterative Deepening 

b ratio ID to DFS 

2 3 

3 2 

5 1.5 

10 1.2 

25 1.08 

100 1.02 
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# of  duplicates 

Speed 

8 Puzzle 

2x2x2 Rubik’s 

15 Puzzle 

3x3x3 Rubik’s 

24 Puzzle 

105    .01 sec 

106    .2 sec 

1017    20k yrs 

1020    574k yrs 

1037    1023 yrs 

      BFS 
Nodes   Time 

  Iter. Deep. 
 Nodes  Time 

Assuming 10M nodes/sec & sufficient memory 

105   .01 sec 

106   .2 sec 

1013    6 days 

1019    68k yrs 

1025    12B yrs 

Slide adapted from Richard Korf presentation 

Why the difference? 
 

8x 

1Mx 

   Rubik has higher branching factor 
   15 puzzle has greater depth 


