
9/26/14

1

CSE 473: Artificial Intelligence
Autumn 2014

Problem Spaces & Search

With slides from 	

Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer	

Dan Weld	

Logistics
§  Piazza
§  PS0 Due for optional grading end of Wed 10/1

2

Outline

§  Search Problems

§  Uninformed Search Methods
§  Depth-First Search
§  Breadth-First Search
§  Uniform-Cost Search

§  Heuristic Search Methods
§  Best First / Greedy Search

Agent vs. Environment

§  An agent is an entity that
perceives and acts.

§  A rational agent selects
actions that maximize its
utility function.

§  Characteristics of the
percepts, environment, and
action space dictate
techniques for selecting
rational actions.

Agent

Sensors

?

Actuators

E
nvironm

ent

Percepts

Actions

Actions? Percepts?

5

Actions? Percepts?

6

Recommender System

9/26/14

2

Types of Agents

§  Reflex

§  Goal oriented

§  Utility-based

7

Famous Reflex Agents

Goal Based Agents

§  Plan ahead
§  Ask “what if”

§  Decisions based on
(hypothesized)
consequences of actions

§  Must have a model of how
the world evolves in
response to actions

§  Act on how the world
WOULD BE

10

Search thru a

§  Set of states
§ Operators [and costs]
§  Start state
§ Goal state [test]

• Path: start ⇒ a state satisfying goal test
 [May require shortest path]
 [Sometimes just need a state that passes test]

•  Input:

• Output:

Problem Space (aka State Space)

Example: Simplified Pac-Man
§  Input:

§  A state space

§  A successor function

§  A start state

§  A goal test

§  Output:

“N”, 1.0

“E”, 1.0

Ex: Route Planning: Arad à Bucharest

§  Input:
§  Set of states

§  Operators [and costs]

§  Start state

§  Goal state (test)

§  Output:

9/26/14

3

14

Ex: Blocks World
§  Input:

§  Set of states

§ Operators [and costs]

§  Start state

§ Goal state (test)

§ Output:

Partially specified plans

Plan modification operators

The null plan (no actions)

A plan which provably achieves

The desired world configuration

15

Multiple Problem
Spaces

Real World
 States of the world (e.g. block configurations)
 Actions (take one world-state to another)

• Problem Space 1
•  PS states =

•  models of world states
•  Operators =

•  models of actions

Robot’s Head
• Problem Space 2
•  PS states =

•  partially spec. plan
•  Operators =

•  plan modificat’n ops

Algebraic Simplification

16

§  Input:
§  Set of states

§  Operators [and costs]

§  Start state

§  Goal state (test)

§ Output:

State Space Graphs

§  State space graph:
§  Each node is a state
§  The successor function

is represented by arcs
§  Edges may be labeled

with costs
§  We can rarely build this

graph in memory (so we
don’t)

S

G

d

b

p q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

State Space Sizes?

§  Search Problem:
 Eat all of the food

§  Pacman positions:
 10 x 12 = 120

§  Pacman facing:
 up, down, left, right

§  Food configurations: 230

§  Ghost1 positions: 12
§  Ghost 2 positions: 11

10 x 12 = 120

up, down, left, right
230

 12
 11

120 x 4 x 230 x 12 x 11 = 6.8 x 1013
19

Search Methods
§  Blind Search

§  Local Search
§  Informed Search
§  Constraint Satisfaction
§  Adversary Search

•  Depth first search
•  Breadth first search
•  Iterative deepening search
•  Uniform cost search

9/26/14

4

Search Trees

§  A search tree:
§  Start state at the root node
§  Children correspond to successors
§  Nodes contain states, correspond to PLANS to those states
§  Edges are labeled with actions and costs
§  For most problems, we can never actually build the whole tree

“E”, 1.0 “N”, 1.0

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

State Graph:

What is the search tree?

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in the
search tree denotes an
entire PATH in the
problem graph.

States vs. Nodes
§  Nodes in state space graphs are problem states

§  Represent an abstracted state of the world
§  Have successors, can be goal / non-goal, have multiple predecessors

§  Nodes in search trees are plans
§  Represent a plan (sequence of actions) which results in the node’s state
§  Have a problem state and one parent, a path length, a depth & a cost
§  The same problem state may be achieved by multiple search tree nodes

Depth 5

Depth 6

Parent

Node

Search Tree Nodes
Problem States

Action

Building Search Trees

§  Search:
§  Expand out possible plans
§ Maintain a fringe of unexpanded plans
§  Try to expand as few tree nodes as possible

General Tree Search

§  Important ideas:
§  Fringe
§  Expansion
§  Exploration strategy

 which fringe node to expand next?

Detailed pseudocode is
in the book!

9/26/14

5

Review? Depth First Search

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
queue (a stack)

Review? Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r q p

h
f d

b
a

c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

Review? Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand
shallowest node
first
Implementation:
Fringe is a FIFO
queue

Review? Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Expansion order:
(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)

Search Algorithm Properties

§  Complete? Guaranteed to find a solution if one exists?
§  Optimal? Guaranteed to find the least cost path?
§  Time complexity?
§  Space complexity?

Variables:

n Number of states in the problem
b The maximum branching factor B

(the maximum number of successors for a state)
C* Cost of least cost solution
d Depth of the shallowest solution
m Max depth of the search tree

DFS

§  Infinite paths make DFS incomplete…
§  How can we fix this?
§  Check new nodes against path from S

§  Infinite search spaces still a problem

Algorithm Complete Optimal Time Space
DFS Depth First

Search
N N O(BLMAX) O(LMAX)

START

GOAL a

b

No No Infinite Infinite

9/26/14

6

DFS

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking Y if finite N O(bm) O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

* Or graph search – next lecture.

BFS

§  When is BFS optimal?

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

N unless
 finite N O(bm) O(bm)

Y Y O(bd) O(bd)

…
b 1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

34

Memory a Limitation?
§ Suppose:

• 4 GHz CPU
• 32 GB main memory
• 100 instructions / expansion
• 5 bytes / node

• 40 M expansions / sec
• Memory filled in 160 sec … 3 min

Comparisons

§  When will BFS outperform DFS?

§  When will DFS outperform BFS?

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1.  Do a DFS which only searches for paths of
length 1 or less.

2.  If “1” failed, do a DFS which only searches paths
of length 2 or less.

3.  If “2” failed, do a DFS which only searches paths
of length 3 or less.
 ….and so on.

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

ID

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y Y O(bd) O(bd)

…
b

37

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

9/26/14

7

38

of duplicates

Speed

8 Puzzle

2x2x2 Rubik’s

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

105 .01 sec

106 .2 sec

1017 20k yrs

1020 574k yrs

1037 1023 yrs

 BFS
Nodes Time

 Iter. Deep.
 Nodes Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?

8x

1Mx

 Rubik has higher branching factor
 15 puzzle has greater depth

