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Search thru a
Problem Space / State Space
* Input:
= Set of states
= Operators [and costs]
= Start state
= Goal state [test]

* Output:

« Path: start = a state satisfying goal test
« [May require shortest path]
* [Sometimes just need state passing test]

Graduation?

Getting a BS in CSE as a search problem?
(don't think too hard)

Space of States
= Operators
Initial State
Goal State

Topics

= Some Useful Bayes Nets
= Hybrid Discrete / Continuous
= Naive Bayes
= Learning Parameters for a Bayesian Network
= Fully observable
= Maximum Likelihood (ML),
= Maximum A Posteriori (MAP)
= Bayesian
= Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks
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Bayes Nets

© Doniel S Weld

Continuous Variables

Earthquake

So far: assuming variables have discrete values
Could also allow continuous values, E € R,
And specify probabilities using a continuous distribution, such as a Gaussian
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Continuous Variables

Bayesian Learning

- Prior
Use Bayes rule: Data Likelihood

2

Posterior P(Y|X) = P(X]Y) P(Y)

; P(X)
/ \ Normalization

Or equivalently: P(Y | X) o« P(X | Y) P(Y)

Easy to compute Summary
Prior Hypothesis

Maximum Likelihood Uniform The most likely
Estimate
Maximum A Any The most likely
Posteriori Estimate,
Weighted
Bayesian Estimate Any combination

Still easy to compute
Incorporates prior
knowledge

&

Minimizes error
Great when data is scarce
Potentially much harder to compute

Parameter Estimation and Bayesian
Networks
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We have:

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and Bayesian
Networks

Now compute
either MAP or
Bayesian estimate

i

P(B) = k + data =




What Prior to Use?

= Prev, you knew: it was one of only three coins
& S &
= Now more complicated...
= The following are two common priors
= Binary variable Beta
= Posterior distribution is binomial
= Easy to compute posterior

= Discrete variable Dirichlet
= Posterior distribution is multinomial
= Easy to compute posterior
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Beta Distribution
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Beta Distribution

Example: Flip coin with Beta distribution as prior

over p [prob(heads)]

1. Parameterized by two positive numbers: a, b

2. Mode of distribution (E[p]) is a/(a+b)

3. Specify our prior belief for p = a/(a+b)

4. Specify confidence in this belief with high initial values
foraand b

Updating our prior belief based on data

= incrementing a for every heads outcome

= incrementing b for every tails outcome

So after h heads out of n flips, our posterior

distribution says P(head)=(a+h)/(a+b+n)

One Prior: Beta Distribution

B(x) = I'(a + b)

2 =TT ® —a

0 <z <1andab>010

Here I'(y) = fum ¥ le~%dx

For any positive integer y, T'(y) = (y-1)!

Parameter Estimation and Bayesian
Networks

Prior B -B
P(B|data) = Beta(1,4) “+ data” = (3.7)

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

Parameter Estimation and Bayesian

Networks
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P(A|E,B) = ?
P(A|E,-B) = ?
P(A|-E,B) = ?
P(A|—|E,—|B) =?




Parameter Estimation and Bayesian
Networks
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P(A|-E,B) = Beta(2,3)
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Parameter Estimation and Bayesian
Networks
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P(A|-E,B) = Beta(2,3) + data= Beta(3.4)

Output of Learning

SIS
Tl -
a4 =] H[=2

Did Learning Work Well?
B

Pr(A|
25 X

Can easily calculate
P(data) for learned parameters
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OMLE = NZ(xi—ﬁ)
i=1

Bayes Nets for Classification

= One method of classification:
= Use a probabilistic model!
= Features are observed random variables F;
= Y is the query variable
= Use probabilistic inference to compute most likely Y

y =argmax, P(y|f1...fn)

= You already know how to do this inference




A Popular Structure: Naive Bayes

P(Y,F1...Fp) = P(Y) HP(Fi\Y)

F1 F2 F3 Fy

Works surprisingly well for classification (predicting the right class)
But forces probabilities towards 0 and 1

[Assume that features are conditionally independent given class variable ]
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Nailve Bayes

= Naive Bayes assumption:
» Features are independent given class:

P(X1,Xo|Y) = P(X1]X2,Y)P(X2[Y)
= P(X1]Y)P(Xo|Y)
= More generally:

P(X1..Xn|Y) = [[PCGIY)

7

= How many parameters?

= Suppose X is composed of n binary features

A Spam Filter

" " Dear Sir.

= Naive Bayes spam filter
First, | must solicit your confidence in this
transaction, this is by virture of its nature as

= Data: being utterly confidencial and top secret. ...

= Collection of emails,

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS

labeled spam or ham
= Note: someone has to

hand label all this data! x V\S/IESSAGE AND PUT "REMOVE" IN THE
L o UBJECT.
= Split into training, held-
out, test sets 99 MILLION EMAIL ADDRESSES
FOR ONLY $99
= Classifiers Ok, Tknow this is blatantly OT but 'm

= |Learn on the training set bggmnlng togo insane. Had an old Dell
Dimension XPS sitting in the corner and

* (Tune it on a held-out set) V decided to put it to use, | know it was

= Testit on new emails working pre being stuck n the corner, but
when | plugged it in, hit the power nothing

happened.

Naive Bayes for Text

= Bag-of-Words Naive Bayes:
= Predict unknown class label (spam vs. ham)
= Assume evidence features (e.g. the words) are independent
= Warning: subtly different assumptions than before!

Word at position

= Generative model i, not i word in
the dictionary!
P(C,Wy...Wy) = P(O)]] P(WL/
i

= Tied distributions and bag-of-words
= Usually, each variable gets its own conditional probability distribution
P(FIY)
= In a bag-of-words model
= Each position is identically distributed
= All positions share the same conditional probs P(W|C)
= Why make this assumption?

Example: Spam Filtering

= Model: P(C,Wy...Wp) = P(C) [[ P(W;|C)
i

= What are the parameters?

P(C) P(W|spam) P(W|ham)
ham : 0.66 the : 0.0156 the : 0.0210
spam: 0.33 to : 0.0153 to 0.0133

and : 0.0115 of 0.0119
of 0.0095 2002: 0.0110
you : 0.0093 with: 0.0108
a : 0.0086 from: 0.0107
with: 0.0080 and : 0.0105
from: 0.0075 a 0.0100

= Where do these come from?

Example: Overfitting

= Posteriors determined by relative probabilities (odds ratios):

P(W|ham) P(Wlspam)
P(W|spam) P(W|ham)
south-west : inf screens cinf
nation s inf minute s inf
morally o inf guaranteed : inf
nicely :inf $205.00 :inf
extent :inf delivery :inf
seriously : inf signature : inf

What went wrong here?




Generalization and Overfitting
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= Relative frequency parameters will overfit the training data!

= Unlikely that every occurrence of “money” is 100% spam

= Unlikely that every occurrence of “office” is 100% ham

= What about all the words that don't occur in the training set at all?

= Ingeneral, we can’t go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only feature

= Would get the training data perfect (if deterministic labeling)
= Wouldn't generalize at all

= Just making the bag-of-words assumption gives some generalization,
= but not enough

To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

= Problems with maximum likelihood estimates:
= |f I flip a coin once, and it's heads, what's the estimate for P(heads)?
= Whatif I flip 10 times with 8 heads?
= Whatif | flip 10M times with 8M heads?

= Basic idea:
= We have some prior expectation about parameters (here, the
probability of heads)
= Given little evidence, we should skew towards our prior
= Given a lot of evidence, we should listen to the data

Estimation: Smoothing

= Relative frequencies are the maximum likelihood estimates

Oy = arg max P(X]0) count(z)

total samples

= PuL@) =
=arg gnax]’[ Py(X;)

= |n Bayesian statistics, we think of the parameters as just another
random variable, with its own distribution

Orrap = arg max P(0|X)
0

=arggnaxP(X\9)P(9)/P(X) |:>

= arg max P(X|0)P(6)
0

Estimation: Laplace Smoothing

= Laplace’s estimate:
pretend you saw every outcome

@006

once more than you actually did

N c=x)+1
Prar(®) = @y 1] Pyp(X) =
_ @) +1
N+ 1X] Ppap(X) =

Can derive this as a MAP estimate with Dirichlet priors
(Bayesian justification)

Estimation: Laplace Smoothing

= Laplace’s estimate (extended):

= Pretend you saw every outcome
k extra times

@00

c(z) +k Prapo(X) =
Prapp(z) = —2 " d
APk () N+ kX]
Prap1(X) =
= What's Laplace with k = 0?
= kis the strength of the prior
. . P Prapioo(X) =
= Laplace for conditionals:
= Smooth each condition
independently: c(z,y) +k

Prapr(zly) = FOENT

Real NB: Smoothing

= For real classification problems, smoothing is critical
= New odds ratios:

P(Wlham) P(W|spam)

P(W|spam) P(Wlham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group 10.2 ORDER  : 27.2
ago 8.4 <FONT> : 26.9
areas 8.3 money 1 26.5

Do these make more sense?
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NB with Bag of Words for text

classification
= |Learning phase:
= Prior P(Y)
= Count how many documents from each topic (prior)
" PXIY)
= For each of m topics, count how many times you saw
word X; in documents of this topic (+ k for prior)
= Divide by number of times you saw the word (+ kx|words|)

= Test phase:
= For each document

= Use naive Bayes decision rule
LengthDoc

hyp(x) = argmax P(y) II

i=1

P(xily)

Probabilities: Important Detail!

= P(spam | X; ... X}) = I1 P(spam | X))
Any more potential problems here?
= We are multiplying lots of small numbers

Danger of underflow!
= 0.5=7E-18

= Solution? Use logs and add!
" P, * P, = e 109(p1)+og(p2)

= Always keep in log form

Naive Bayes

P(Y,F1...Fa) = POO I P(FIY)

Works surprisingly well for classification (predicting the right class)

Assume that features are conditionally independent given class variable
But forces probabilities towards 0 and 1

Example Bayes’ Net: Car

What if we don’t know
structure?

Learning The Structure
of Bayesian Networks

= Search thru the space...
= of possible network structures!
= (for now still assume can observe all values)
= For each structure, learn parameters
= As just shown...
= Pick the one that fits observed data best
= Calculate P(data)
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Two problems:
« Fully connected will be most probable
< Exponential number of structures

Learning The Structure
of Bayesian Networks

= Search thru the space...
= of possible network structures!

= For each structure, learn parameters
= As just shown...

= Pick the one that fits observed data best
= Calculate P(data)

Two problems:
» Fully connected will be most probable
» Add penalty term (regularization) ¢ model complexity
« Exponential number of structures
* Local search

Learning The Structure

of Bayesian Networks

= Search thru the space

= For each structure, learn parameters

= Pick the one that fits observed data best
= Penalize complex models

Problem? .
gxponentlal number of networks!
And we need to learn parameters for each!

Exhaustive search out of the question!
So what now?

Structure Learning as Search

= Local Search
1. Start with some network structure

2. Try to make a change
(add or delete or reverse edge)

3. See if the new network is any better

= What should the initial state be?
= Uniform prior over random networks?
= Based on prior knowledge?
= Empty network?

= How do we evaluate networks?

© Daniel 5. Weld
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Score Functions

= Bayesian Information Criteion (BIC)
= P(D | BN) — penalty
= Penalty = % (# parameters) Log (# data points)

= MAP score
* P(BN | D) = P(D | BN) P(BN)
= P(BN) must decay exponentially with # of
parameters for this to work well

© Daniel 5. Weld




Topics

= Some Useful Bayes Nets
= Hybrid Discrete / Continuous
= Naive Bayes
= Learning Parameters for a Bayesian Network
= Fully observable
= Maximum Likelihood (ML),
= Maximum A Posteriori (MAP)
= Bayesian
= Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks
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Tuning on Held-Out Data

= Now we've got two kinds of unknowns
= Parameters: the probabilities P(Y|X), P(Y)

= Hyperparameters, like the amount of training
smoothing to do: k, (

>
[€)
= Where to learn? I
- S
= Learn parameters from training dvata O |held-out
= Must tune hyperparameters on different 8 test
data
= Why?
= For each value of the hyperparameters, «

train and test on the held-out data

Choose the best value and do a final test
on the test data

Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier

= Gives all test instances whatever label was most common in the
training set

= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed

= E.g. calling everything “ham” gets 66%, so a classifier that gets
70% isn't very good...

= For real research, usually use previous work as a
(strong) baseline

Confidences from a Classifier

= The confidence of a probabilistic classifier: M

= Posterior over the top label
:DDH

Represents how sure the classifier is of the P(ylx)
classification =

Any probabilistic model will have
confidences

No guarantee confidence is correct DD
= Calibration P(ylx)
= Weak calibration: higher confidences mean
higher accuracy

accuracy

confidence(z) = myax P(y|x)

. .
accuracy

>
3
= Strong calibration: confidence predicts [
accuracy rate 3 D
®
= What's the value of calibration? 1=
P(ylx)

Precision vs. Recall

= Let's say we want to classify web pages as

homepages or not - actual +
= In atest set of 1K pages, there are 3 homepages
= Our classifier says they are all non-homepages
= 99.7 accuracy!
= Need new measures for rare positive events guessed +

= Precision: fraction of guessed positives which were actually positive
= Recall: fraction of actual positives which were guessed as positive

= Say we detect 5 spam emails, of which 2 were actually spam, and we
missed one

= Precision: 2 correct / 5 guessed = 0.4
= Recall: 2 correct / 3 true = 0.67

= Which is more important in customer support email automation?

s \Whichicmoraimnodantinaimartfacaracaonition? |
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Precision vs. Recall

Errors, and What to Do

= Precision/recall tradeoff
= Often, you can trade off
precision and recall
= Only works well with weakly
calibrated classifiers

precision

recall

= To summarize the tradeoff:

= Break-even point: precision
value whenp =r

= F-measure: harmonic mean
ofpandr:

Fy

2
T 1/p+1/r

= Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest
version of OmniPage Pro, for just $99.99* - the regular list
price is $499! The most common question we"ve received about
this offer is - Is this genuine? We would like to assure you
that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .

. - . To receive your $30 Amazon.com promotional certificate,
click through to

http://wmw.amazon . com/apparel
and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you*d rather not receive future e-mails announcing new store
launches, please click . . .

What to Do About Errors?

Summary

= Need more features— words aren’t enough!
= Have you emailed the sender before?
= Have 1K other people just gotten the same email?
= |s the sending information consistent?
= |s the email in ALL CAPS?
= Do inline URLs point where they say they point?
= Does the email address you by (your) name?

= Can add these information sources as new variables in
the NB model

= Next class we'll talk about classifiers which let you easily
add arbitrary features more easily

= Bayes rule lets us do diagnostic queries with causal
probabilities

= The naive Bayes assumption takes all features to be
independent given the class label

= We can build classifiers out of a naive Bayes model
using training data

= Smoothing estimates is important in real systems

= Classifier confidences are useful, when you can get
them

Errors, and What to Do

What to Do About Errors?

= Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest
version of OmniPage Pro, for just $99.99* - the regular list
price is $499! The most common question we"ve received about
this offer is - Is this genuine? We would like to assure you
that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel
and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you"d rather not receive future e-mails announcing new store
launches, please click . . .

= Need more features— words aren’t enough!
= Have you emailed the sender before?
= Have 1K other people just gotten the same email?
= |s the sending information consistent?
= Is the email in ALL CAPS?
= Do inline URLs point where they say they point?
= Does the email address you by (your) name?

= Can add these information sources as new variables in
the NB model

= Next class we'll talk about classifiers which let you easily
add arbitrary features more easily

10



Summary

Bayes rule lets us do diagnostic queries with causal
probabilities

The naive Bayes assumption takes all features to be
independent given the class label

We can build classifiers out of a naive Bayes model
using training data

Smoothing estimates is important in real systems

Classifier confidences are useful, when you can get
them
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