CSE 473: Artificial Intelligence Spring 2012

Bayesian Networks - Learning

Dan Weld

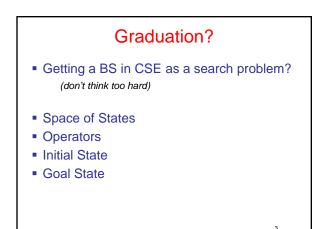
Slides adapted from Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Search thru a Problem Space / State Space

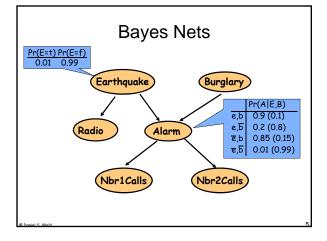
- Input:
 - Set of statesOperators [and costs]
 - Start state
 - Goal state [test]

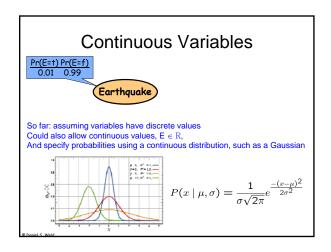
• Output:

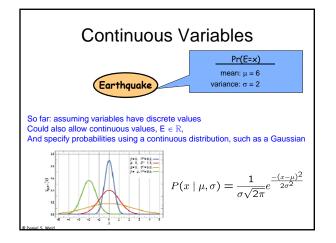
- Path: start \Rightarrow a state satisfying goal test
- [May require shortest path]
- [Sometimes just need state passing test]

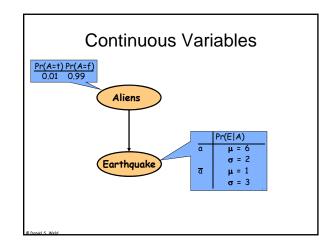


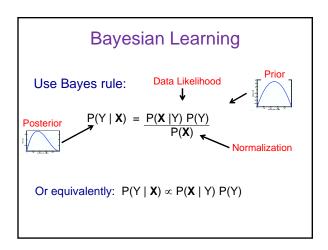
- Bayesian
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

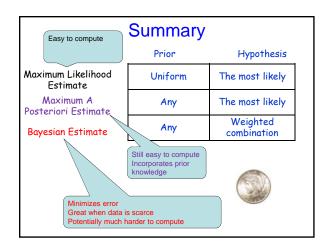


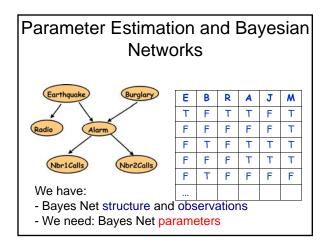


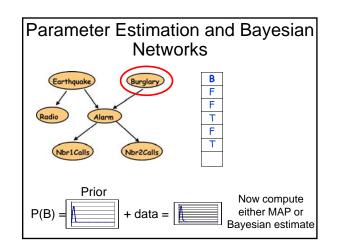


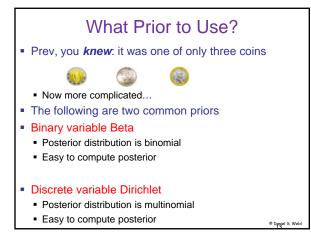


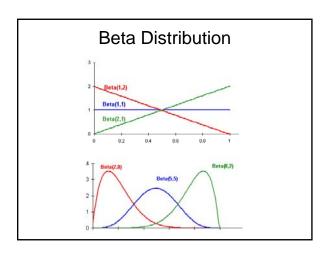


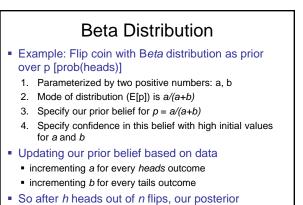


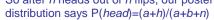


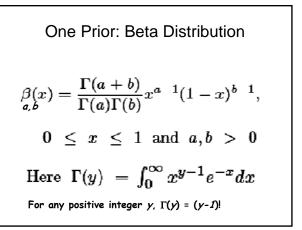


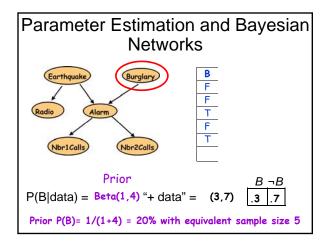


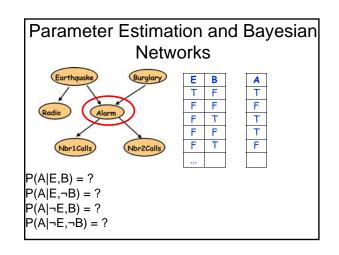


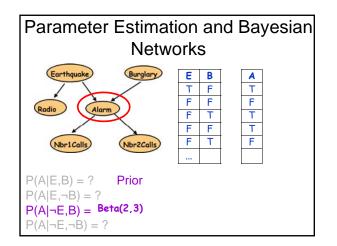


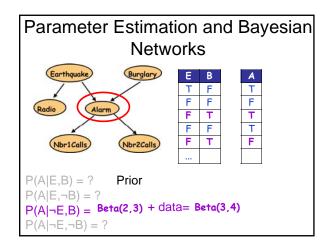


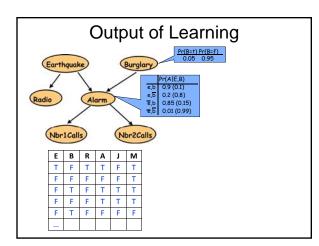


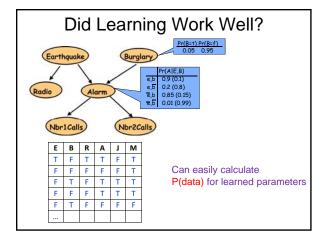


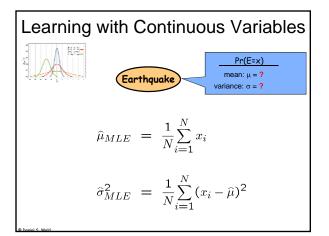


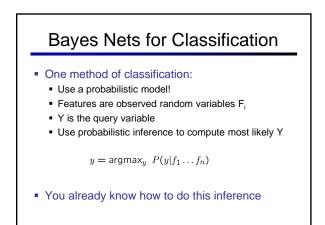


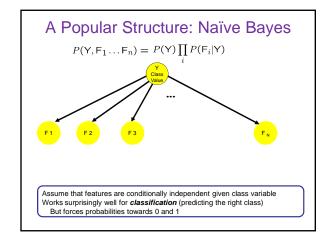


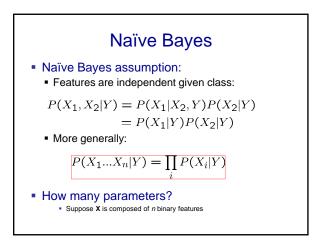


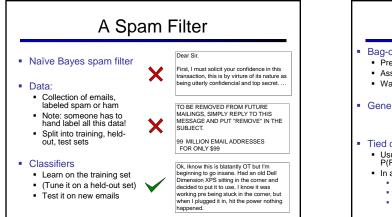


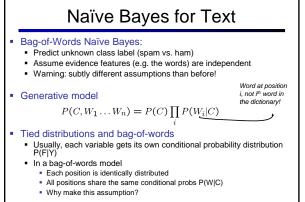


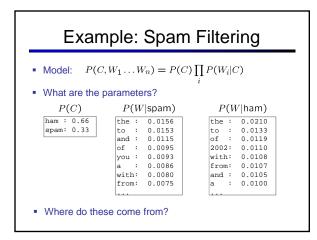


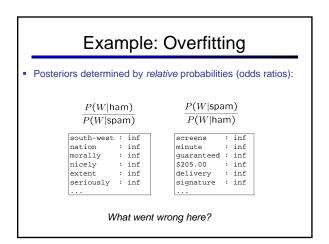












Generalization and Overfitting

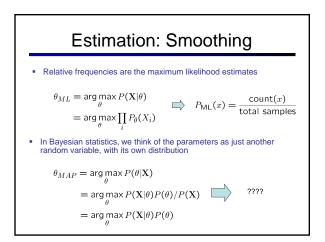
- Relative frequency parameters will overfit the training data!
 - Unlikely that every occurrence of "money" is 100% spam
 - Unlikely that every occurrence of "office" is 100% ham
 - What about all the words that don't occur in the training set at all?
 In general, we can't go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only feature
 Would get the training data perfect (if deterministic labeling)
 - Wouldn't generalize at all
 - Just making the bag-of-words assumption gives some generalization,
 but not enough
- To generalize better: we need to smooth or regularize the estimates

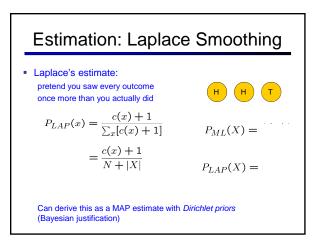
Estimation: Smoothing

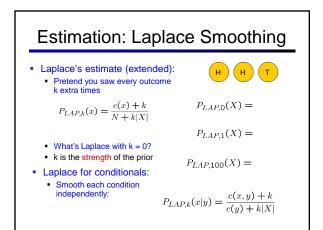
- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it's heads, what's the estimate for P(heads)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

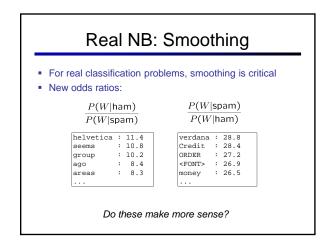
Basic idea:

- We have some prior expectation about parameters (here, the probability of heads)
- · Given little evidence, we should skew towards our prior
- Given a lot of evidence, we should listen to the data









NB with Bag of Words for text classification

Learning phase:

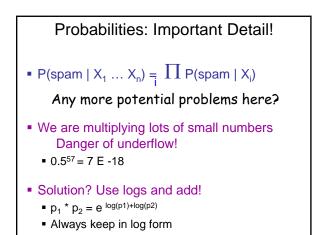
Prior P(Y)

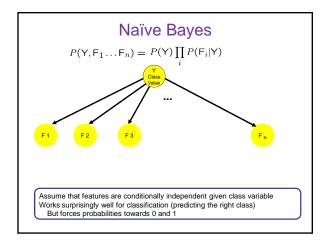
- Count how many documents from each topic (prior)
- P(X_i|Y)
 For each of m topics, count how many times you saw
 - word X_i in documents of this topic (+ k for prior)
 - Divide by number of times you saw the word (+ k×|words|)

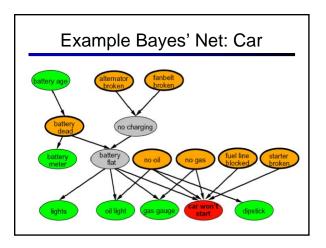
Test phase:

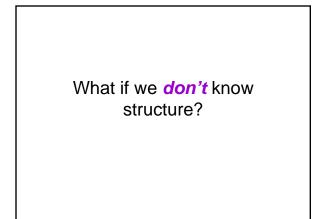
- For each document
 - Use naïve Bayes decision rule

$$h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) \prod_{i=1}^{Lengthi Doc} P(x_i|y)$$







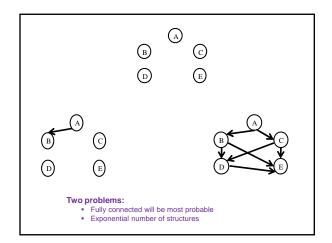


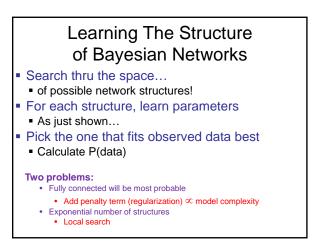
Search thru the space...

- of possible network structures!
- (for now still assume can observe all values)
- For each structure, learn parameters

As just shown...

- Pick the one that fits observed data best
 - Calculate P(data)





Learning The Structure of Bayesian Networks

- Search thru the space
- For each structure, learn parameters
- Pick the one that fits observed data best
- Penalize complex models

Problem? Exponential number of networks! And we need to learn parameters for each! Exhaustive search out of the question! So what now?

Structure Learning as Search

Local Search

- 1. Start with some network structure
- 2. Try to make a change (add or delete or reverse edge)
- 3. See if the new network is any better
- What should the initial state be?
 - Uniform prior over random networks?

© Daniel 5. Weld

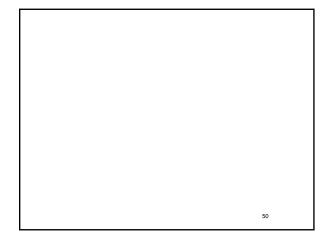
- Based on prior knowledge?
- Empty network?
- How do we evaluate networks?

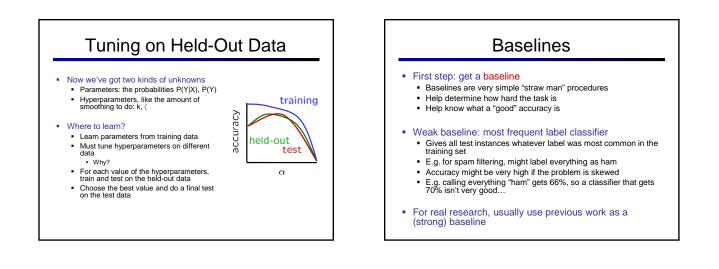
Score Functions

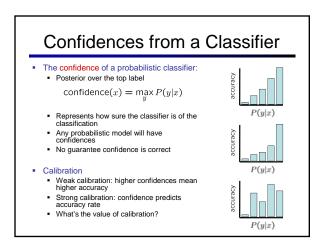
- Bayesian Information Criteion (BIC)
 - P(D | BN) penalty
 - Penalty = ½ (# parameters) Log (# data points)
- MAP score
 - P(BN | D) = P(D | BN) P(BN)
 - P(BN) must decay exponentially with # of parameters for this to work well

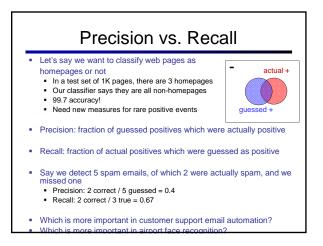
Topics

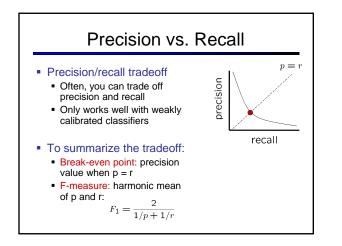
- Some Useful Bayes Nets
 - Hybrid Discrete / Continuous
 - Naïve Bayes
- Learning Parameters for a Bayesian Network
 - Fully observable
 - Maximum Likelihood (ML),
 - Maximum A Posteriori (MAP)
 - Bayesian
 - Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

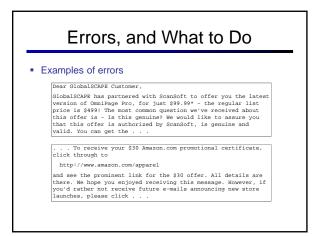












What to Do About Errors?

Need more features— words aren't enough!

- Have you emailed the sender before?
- Have 1K other people just gotten the same email?
- Is the sending information consistent?Is the email in ALL CAPS?
- Do inline URLs point where they say they point?
- Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- · Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

ClobalSCAPE has partnered with ScanSoft to offer you the latest version of OmmiPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

- http://www.amazon.com/apparel
- and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

- Need more features- words aren't enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them