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B i N t k L iBayesian Networks - Learning

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, 
Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0 95

Only 10 params

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99

Example: Car Diagnosis

5© D. Weld and D. Fox

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a
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Variable Elimination
P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)

e              a

Repeated computations  Dynamic Programming

P(B|C) 

8

MCMC with Gibbs Sampling
 Fix the values of observed variables

 Set the values of all non-observed variables randomly

 Perform a random walk through the space of complete 
variable assignments.  On each move:

1. Pick a variable X

9

1. Pick a variable X

2. Calculate Pr(X=true | Markov blanket)

3. Set X to true with that probability

 Repeat many times.  Frequency with which any variable 
X is true is it’s posterior probability.

 Converges to true posterior when frequencies stop 
changing significantly

 stable distribution, mixing

The Origin of Bayes Nets

Earthquake Burglary
Pr(B=t) Pr(B=f)

0.05    0.95

Pr(A|E,B)
e b    0 9 (0 1)
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Alarm

Nbr2CallsNbr1Calls

e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio

Learning Topics

 Learning Parameters for a Bayesian Network
 Fully observable
 Maximum Likelihood (ML)

© Daniel S. Weld

 Maximum A Posteriori (MAP)

 Bayesian

 Hidden variables (EM algorithm)

 Learning Structure of Bayesian Networks

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...We have: 

- Bayes Net structure and observations
- We need: Bayes Net parameters
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?

P(¬B) = 1- P(B) 

= 0.4

= 0.6

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Parameter Estimation and Bayesian 
Networks

Coin

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1)=0.1 

C1 C2 C3

P(C1)=1/3 P(C2) = 1/3 P(C3) = 1/3
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data

Terminology

Prior: 
 Probability of a hypothesis before we see any data

Uniform Prior: 
 A prior that makes all hypothesis equally likelyA prior that makes all hypothesis equally likely

Posterior: 
 Probability of a hypothesis after we saw some data

Likelihood: 
 Probability of data given hypothesis

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 5

Most likely coin: 

C

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(H|C2) = 0.5C2
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Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C ) = 0 5C

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

P(H|C2) = 0.5

C2

P(C2) = 1/3

P(H|C2) = 0.5C2

Using Prior Knowledge

 Should we always use a Uniform Prior ?

 Background knowledge:
Heads => we have to buy Dan chocolate

D lik h l tDan likes chocolate…

=> Dan is more likely to use a coin biased in his favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Using Prior Knowledge

We can encode it in the prior:

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006P(C2|H) = 0.165 P(C3|H) = 0.829

P(C |H) 0 066P(C |H) 0 333 P(C |H) 0 600
Compare with ML posterior after Exp 1:

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.600

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70
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Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT)=0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 9C

Most likely coin: 

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(H|C3) = 0.9C3

Your Estimate?

Most likely coin: Best estimate for P(H) 

Maximum A Posteriori (MAP) Estimate: 
The best hypothesis that fits observed data 

assuming a non-uniform prior

P(H|C3) = 0.9C3

P(H|C3) = 0.9

C3

P(C3) = 0.70

Did We Do The Right Thing?

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

Did We Do The Right Thing?

P(C1|HT) =0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

C2 and C3 are almost 
equally likely

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

equally likely
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A Better Estimate

Recall: = 0.680

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

Bayesian Estimate

= 0.680

Bayesian Estimate: Minimizes prediction error, 
given data assuming an arbitrary prior

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

Comparison 
After more experiments: HTHHHHHHHHH

ML (Maximum Likelihood):
P(H) = 0.5
after 10 experiments: P(H) = 0.9

MAP (Maximum A Posteriori):( )
P(H) = 0.9
after 10 experiments: P(H) = 0.9

Bayesian:
P(H) = 0.68
after 10 experiments: P(H) = 0.9

Summary
Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Uniform The most likely

Any The most likely

Any Weighted 

Easy to compute

Bayesian Estimate Any g
combination

Still easy to compute
Incorporates prior 
knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute

Bayesian Learning

Use Bayes rule:
Prior

Data Likelihood

Posterior P(Y | X)  =  P(X |Y) P(Y)
P(X)

Or equivalently:  P(Y | X)  P(X | Y) P(Y)

Normalization

P(X)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?
-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Prior

+ data = 
-2
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0 0.2 0.4 0.6 0.8 1

Now compute
either MAP or

Bayesian estimate
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What Prior to Use?
 Prev, you knew: it was one of only three coins

 Now more complicated…

 The following are two common priors

 Binary variable Beta
 Posterior distribution is binomial

 Easy to compute posterior

 Discrete variable Dirichlet
 Posterior distribution is multinomial

 Easy to compute posterior © Daniel S. Weld43

Beta Distribution

Beta Distribution

 Example: Flip coin with Beta distribution 
as prior over p [prob(heads)]
1. Parameterized by two positive numbers: a, b

2 Mode of distribution (E[p]) is a/(a+b)2. Mode of distribution (E[p]) is a/(a+b)

3. Specify our prior belief for p = a/(a+b)

4. Specify confidence in this belief with high 
initial values for a and b

 Updating our prior belief based on data
 incrementing a for every heads outcome

 incrementing b for every tails outcome

S ft h h d t f fli

One Prior: Beta Distribution

a,b

For any positive integer y, (y) = (y-1)!

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B|data) = ?

Prior
“+ data” = Beta(1,4) (3,7) .3

B ¬B

.7

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

Beta(2,3)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

+ data= Beta(2,3) (3,4)

Bayesian Learning

Use Bayes rule:
Prior

Data Likelihood

Posterior P(Y | X)  =  P(X |Y) P(Y)
P(X)

Or equivalently:  P(Y | X)  P(X | Y) P(Y)

Normalization

P(X)


