CSE 473: Artificial Intelligence Spring 2012

Bayesian Networks - Learning

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore \& Luke Zettlemoyer

Bayes' Net Semantics

Formally:

- A set of nodes, one per variable X
- A directed, acyclic graph
- A CPT for each node
- CPT = "Conditional Probability Table"
- Collection of distributions over X, one for each combination of parents' values

$P\left(X \mid a_{1} \ldots a_{n}\right)$

A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain independence assumptions
- Compare to the exact decomposition according to the chain rule!

Example: Car Diagnosis

© D. Weld and D. Fox
$P(B \mid J=$ true, $M=$ true $)$

$$
\mathrm{P}(\mathrm{~b} \mid \mathrm{j}, \mathrm{~m})=\alpha \sum_{\mathrm{e}, \mathrm{a}} \mathrm{P}(\mathrm{~b}, \mathrm{j}, \mathrm{~m}, \mathrm{e}, \mathrm{a})
$$

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:

1. Pick a variable X
2. Calculate $\operatorname{Pr}(X=$ true | Markov blanket)
3. Set X to true with that probability

- Repeat many times. Frequency with which any variable X is true is it's posterior probability.
- Converges to true posterior when frequencies stop changing significantly
- stable distribution, mixing 9

Likelihood weighting $P(B \mid C)$

| BE A C N weight |
| :--- | :--- | :--- |

Coin Flip

Which coin will I use?
$P\left(C_{1}\right)=1 / 3 \quad P\left(C_{2}\right)=1 / 3 \quad P\left(C_{3}\right)=1 / 3$
Uniform Prior: All hypothesis are equally likely before we make any observations

Experiment 1: Heads	
Which coin did I use?	
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=0.066 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=0.333$	$\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=0.6$
Posterior: Probability of a hypothesis given data	
C_{1}	C_{2}
Cl	
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{C}_{1}\right)=1 / 3$	$\mathrm{P}\left(\mathrm{C}_{2}\right)=1 / 3$

Experiment 2: Tails		
Now, Which coin did I use?		
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=$?	$\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=$?	$\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=$?
$P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)$		
C_{1} $(\mathrm{Ci}$	$\begin{aligned} & \mathrm{C}_{2} \\ & (\\ & \hline \end{aligned}$	C_{3}
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$
$\mathrm{P}\left(\mathrm{C}_{1}\right)=1 / 3$	$\mathrm{P}\left(\mathrm{C}_{2}\right)=1 / 3$	$\mathrm{P}\left(\mathrm{C}_{3}\right)=1 / 3$

Terminology

-Prior:

- Probability of a hypothesis before we see any data
- Uniform Prior:
- A prior that makes all hypothesis equally likely
-Posterior:
- Probability of a hypothesis after we saw some data
-Likelihood:
- Probability of data given hypothesis

Your Estimate?

What is the probability of heads after two experiments?

Most likely coin:

Best estimate for $\mathrm{P}(\mathrm{H})$

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5
$$

Using Prior Knowledge

- Should we always use a Uniform Prior?
- Background knowledge:

Heads => we have to buy Dan chocolate
Dan likes chocolate...
=> Dan is more likely to use a coin biased in his favor

Using Prior Knowledge

We can encode it in the prior:

Experiment 1: Heads

Which coin did I use?
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=?$

$P\left(G_{1} \mid F\right)=a P\left(H \mid C_{1}\right) P\left(C_{1}\right)$

Experiment 2: Tails

Which coin did I use?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=$?
$P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)$

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

A Better Estimate		
Recall: $\boldsymbol{P}(\boldsymbol{H})=\sum_{i=1}^{\mathbf{3}} \boldsymbol{P}\left(\boldsymbol{H} \mid \boldsymbol{C}_{i}\right) \boldsymbol{P}\left(\boldsymbol{C}_{i}\right)=0.680$		
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035$	$\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481$	$\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$
C_{1}	C_{2}	C_{3}
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error, given data assuming an arbitrary prior
$P(H)=\sum_{i=1}^{n} P\left(H \mid C_{i}\right) P\left(C_{i}\right)=0.680$

Comparison

After more experiments: HTHHHHHHHHH
ML (Maximum Likelihood):
$\mathrm{P}(\mathrm{H})=0.5$
after 10 experiments: $\mathrm{P}(\mathrm{H})=0.9$
MAP (Maximum A Posteriori):
$\mathrm{P}(\mathrm{H})=0.9$
after 10 experiments: $P(H)=0.9$
Bayesian:
$P(H)=0.68$
after 10 experiments: $\mathrm{P}(\mathrm{H})=0.9$

What Prior to Use?

- Prev, you knew: it was one of only three coins
- Now more complicated...
- The following are two common priors
- Binary variable Beta
- Posterior distribution is binomial
- Easy to compute posterior
- Discrete variable Dirichlet
- Posterior distribution is multinomial
- Easy to compute posterior

Beta Distribution

- Example: Flip coin with Beta distribution as prior over p [prob(heads)]

1. Parameterized by two positive numbers: a, b
2. Mode of distribution ($\mathrm{E}[\mathrm{p}]$) is $a /(a+b)$
3. Specify our prior belief for $p=a /(a+b)$
4. Specify confidence in this belief with high initial values for a and b

- Updating our prior belief based on data
- incrementing a for every heads outcome
- incrementing b for every tails outcome

Prior
$P(B \mid$ data $)=\operatorname{Beta}(1,4) "+$ data" $=(3,7) \quad .3 .7$
Prior $P(B)=1 /(1+4)=20 \%$ with equivalent sample size 5

Beta Distribution

One Prior: Beta Distribution

$$
\underset{a, b}{\beta(x)}=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a} \quad 1(1-x)^{b} \quad 1
$$

$$
0 \leq x \leq 1 \text { and } a, b>0
$$

$$
\text { Here } \Gamma(y)=\int_{0}^{\infty} x^{y-1} e^{-x} d x
$$

For any positive integer $y, \Gamma(y)=(y-1)$!

Parameter Estimation and Bayesian Networks

