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B i N t k I fBayesian Networks - Inference

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, 
Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Probabilistic Models - Outline

 Bayesian Networks (BNs)

 Independence

 Efficient Inference in BNsEfficient Inference in BNs
 Variable Elimination

 Direct Sampling

 Markov Chain Monte Carlo (MCMC)

 Learning 

Bayes’ Nets: Big Picture

 Problems with using full joint distribution :
 Unless very few variables, the joint is WAY too big
 Unless very few variables, hard to learn (estimate empirically)

 Bayesian networks: a technique for describing complex joint Bayesian networks: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 A kind of “graphical model”
 We describe how random variables interact, locally 
 Local interactions chain together to give global distribution

Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0 95

10 params vs 31

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99

Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!
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Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?

 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example

 Example:

X Y Z

 Question: are X and Z independent?
 Answer: no.  

 Example: low pressure causes rain, which causes traffic.
 Knowledge about X may change belief in Z, 
 Knowledge about Z may change belief in X (via Y)
 Addendum: they could be independent: how?

Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple

Active Triples Inactive Triples

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)
 Common cause A  B  C 

where B is unobserved
 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Example

 Variables:
 R: Raining

 W: Wet 

 P: Plants growing

 T: Traffic bad

R

Active Triples

 D: Roof drips

 S: I’m sad

 Questions:
 W  D 

W

T

S

D

P

Example

 Variables:
 R: Raining

 W: Wet 

 P: Plants growing

 T: Traffic bad

R

Active Triples

 D: Roof drips

 S: I’m sad

 Questions:
 W  D 

 P  D | R, S 

W

T

S

D

P
No

Example

 Variables:
 R: Raining

 W: Wet 

 P: Plants growing

 T: Traffic bad

R

Active Triples

 D: Roof drips

 S: I’m sad

 Questions:
 W  D 

 P  D | R, S 

 P  D | R, T 

W

T

S

D

Yes

P
No

No

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 12

MB(X) = Par(X)  Childs(X)  Par(Childs(X))
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Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 13

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Inference in BNs

The graphical independence representation

 yields efficient inference schemes

We generally want to compute 

Marginal probability: Pr(Z),g p y ( ),

Pr(Z|E) where E is (conjunctive) evidence

 Z: query variable(s), 

 E: evidence variable(s)

 everything else: hidden variable

Computations organized by network topology
© D. Weld and D. Fox 30

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m|a)
e a

Variable Elimination
P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)

e        a

Repeated computations  Dynamic Programming

Approximate Inference in Bayes Nets
Sampling based methods

(Based on slides by Jack Breese 
and Daphne Koller)

44
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Bayes Net is a generative model
 We can easily generate samples from the 

distribution represented by the Bayes net
 Generate one variable at a time in topological order

Use the samples to compute marginal probabilities, say P(c)

P(B|C) 

46

P(B|C) 

47

P(B|C) 

48

P(B|C) 

49

P(B|C) 

50
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P(B|C) 

51

P(B|C) 

52

P(B|C) 

53

P(B|C) 

54

P(B|C) 

55

P(B|C) 

56
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P(B|C) 

57

P(B|C) 

58

P(B|C) 

59

P(B|C) 

60

P(B|C) 

61

Rejection Sampling

 Sample from the prior
 reject if do not match the evidence

R t i t t t i ti t Returns consistent posterior estimates

 Hopelessly expensive if P(e) is small
 P(e) drops off exponentially with no. of evidence 

vars

62
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Likelihood Weighting

 Idea: 
 fix evidence variables

 sample only non-evidence variables

 weight each sample by the likelihood of weight each sample by the likelihood of 
evidence

63

P(B|C) 

64

P(B|C) 

65

P(B|C) 

66

P(B|C) 

67

P(B|C) 

68
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P(B|C) 

69

P(B|C) 

70

P(B|C) 

71

P(B|C) 

72

P(B|C) 

73

Likelihood Weighting
 Sampling probability: S(z,e) =  
 Neither prior nor posterior

 Wt for a sample <z,e>:

 Weighted Sampling probability S(z,e)w(z,e)


i

))Parents(Z|P(z ii


i

ii )Parents(E|P(e  e) w(z,

=

= P(z,e)

  returns consistent estimates

 performance degrades w/ many evidence vars
 but a few samples have nearly all the total weight

 late occuring evidence vars do not guide sample generation 


i

ii )Parents(E|P(e
i

))Parents(Z|P(z ii

74
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MCMC with Gibbs Sampling
 Fix the values of observed variables

 Set the values of all non-observed variables randomly

 Perform a random walk through the space of complete 
variable assignments.  On each move:

1. Pick a variable X

75

1. Pick a variable X

2. Calculate Pr(X=true | all other variables)

3. Set X to true with that probability

 Repeat many times.  Frequency with which any variable 
X is true is it’s posterior probability.

 Converges to true posterior when frequencies stop 
changing significantly

 stable distribution, mixing

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 76

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Markov Blanket Sampling
 How to calculate Pr(X=true | all other variables) ?

 Recall: a variable is independent of all others given it’s Markov 
Blanket

 parents

 children

th t f hild

77
( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

 other parents of children

 So problem becomes calculating Pr(X=true | MB(X))
 We solve this sub-problem exactly

 Fortunately, it is easy to solve

Example

( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

( , , , )
( | , , )

( , , )

P X A B C
P X A B C

P A B C


A
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( )

( , , )

( ) ( )
( | ) ( | , )

( , , )

( | )

( | ) ( ) ( | , )

( | , )

P A B

P A P X A P C P B

C

P A P C
P X A P B X C

P A B C

P X

X

A P B X C

C





 
  
 



X

B

C

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

79

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

80

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1
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Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: h, b

81

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: h, g

 Sample H using P(H|s,g,b)
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

  Suppose result is ~h
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g

Sample G using P(G|s,~h,b)86

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1
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Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g

Sample G using P(G|s,~h,b)

Suppose result is ~g
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Gibbs MCMC Summary

 Advantages:

 No samples are discarded

N bl ith l f l i ht

P(X|E) =
number of samples with X=x 

total number of samples

 No problem with samples of low weight 

 Can be implemented very efficiently
 10K samples @ second

 Disadvantages:

 Can get stuck if relationship between vars is deterministic

 Many variations devised to make MCMC more robust

88

Other inference methods

 Exact inference
 Junction tree

 Approximate inference Approximate inference
 Belief Propagation

 Variational Methods

89


