CSE 473: Artificial Intelligence Spring 2012

Bayesian Networks - Inference

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore \& Luke Zettlemoyer

Probabilistic Models - Outline

- Bayesian Networks (BNs)
- Independence
- Efficient Inference in BNs
- Variable Elimination
- Direct Sampling
- Markov Chain Monte Carlo (MCMC)
- Learning

Bayes' Nets: Big Picture

Problems with using full joint distribution :

- Unless very few variables, the joint is WAY too big
- Unless very few variables, hard to learn (estimate empirically)

Bayesian networks: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)

- A kind of "graphical model"
- We describe how random variables interact, locally
- Local interactions chain together to give global distribution

Bayes' Net Semantics

Formally:

- A set of nodes, one per variable X
- A directed, acyclic graph
- A CPT for each node
- CPT = "Conditional Probability Table"
- Collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

A Bayes net $=$ Topology $($ graph $)+$ Local Conditional Probabilities

Example: Alarm Network								10 params vs 31	
B +b $\leftarrow \mathrm{b}$	$\begin{array}{\|l\|} \hline P(B) \\ \hline 0.001 \\ \hline 0.999 \\ \hline \end{array}$					$\begin{array}{\|l\|} \hline E \\ \hline+e \\ \hline \leftarrow e \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline P(E) \\ \hline 0.002 \\ \hline 0.998 \\ \hline \end{array}$	P(A\|B, E)
						B	E	A	
						+b	+e	+a	0.95
						+b	+e	$\leftarrow a$	0.05
						+b	$\leftarrow \mathrm{e}$	+a	0.94
A	J	P(J\|A)	A	M	P(M\|A)	+b	$\leftarrow \mathrm{e}$	$\leftarrow a$	0.06
+a	+j	0.9	+a	+m	P(M, 0.7	\leftarrow b	+e	+a	0.29
+a	\leftarrow j	0.1	+a		0.3	\leftarrow b	+e	$\leftarrow a$	0.71
$\leftarrow \mathrm{a}$	+j	0.05	$+{ }_{\text {+ }}$	$\leftarrow \mathrm{tm}$	0.3	\leftarrow b	$\leftarrow \mathrm{e}$	+a	0.001
$\leftarrow \mathrm{a}$	$\leftarrow ⿺$	0.95	$\leftarrow \mathrm{\leftarrow a}$	$\leftarrow \mathrm{m}$	0.91	\leftarrow b	$\leftarrow \mathrm{e}$	$\leftarrow a$	0.999

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain independence assumptions
- Compare to the exact decomposition according to the chain rule!

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z independent?
- Answer: no.
- Example: low pressure causes rain, which causes traffic.
- Knowledge about X may change belief in Z,
- Knowledge about Z may change belief in X (via Y)
- Addendum: they could be independent: how?

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
- Look for active paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $\mathrm{A} \leftarrow \mathrm{B} \rightarrow \mathrm{C}$
where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its $\mathrm{A} \rightarrow \mathrm{B} \underset{\text { descendents is observed }}{\mathrm{C}}$ where B or one
- All it takes to block a path is a single inactive segment

Inference in BNs

-The graphical independence representation

- yields efficient inference schemes
-We generally want to compute
- Marginal probability: $\operatorname{Pr}(Z)$,
- $\operatorname{Pr}(Z \mid E)$ where \boldsymbol{E} is (conjunctive) evidence
- Z: query variable(s),
- E: evidence variable(s)
- everything else: hidden variable
-Computations organized by network topology © D. Weld and D. Fox

Approximate Inference in Bayes Nets Sampling based methods
(Based on slides by Jack Breese and Daphne Koller)

4

Rejection Sampling

- Sample from the prior
- reject if do not match the evidence
- Returns consistent posterior estimates
- Hopelessly expensive if $P(e)$ is small
- $\mathrm{P}(\mathrm{e})$ drops off exponentially with no. of evidence vars
.

Likelihood Weighting

- Idea:
- fix evidence variables
- sample only non-evidence variables
- weight each sample by the likelihood of evidence

Likelihood weighting $\mathrm{P}(\mathrm{B} \mid \mathrm{C})$

Likelihood weighting $\mathrm{P}(\mathrm{B} \mid \mathrm{C})$

Likelihood Weighting

- Sampling probability: $\mathrm{S}(\mathrm{z}, \mathrm{e})=\prod \mathrm{P}\left(\mathrm{z}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{Z}_{\mathrm{i}}\right)\right)$
- Neither prior nor posterior
- Wt for a sample <z,e>: $w(z, e)=\prod_{i} P\left(e_{i} \mid \operatorname{Parents}\left(\mathrm{E}_{\mathrm{i}}\right)\right.$
- Weighted Sampling probability $S(z, e) w(z, e)$

$$
\begin{aligned}
& =\prod_{i} \mathrm{P}\left(\mathrm{z}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{Z}_{\mathrm{i}}\right)\right) \prod_{\mathrm{i}} \mathrm{P}\left(\mathrm{e}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{E}_{\mathrm{i}}\right)\right. \\
& =\mathrm{P}(\mathrm{z}, \mathrm{e})
\end{aligned}
$$

- \rightarrow returns consistent estimates
- performance degrades w/ many evidence vars
- but a few samples have nearly all the total weight
- late occuring evidence vars do not guide sample generatio $\overline{1}^{4}$

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:

1. Pick a variable X
2. Calculate $\operatorname{Pr}(X=$ true | all other variables $)$
3. Set X to true with that probability

- Repeat many times. Frequency with which any variable X is true is it's posterior probability.
- Converges to true posterior when frequencies stop changing significantly
- stable distribution, mixing

Markov Blanket Sampling

- How to calculate $\operatorname{Pr}(\mathrm{X}=$ true | all other variables) ?

Recall: a variable is independent of all others given it's Markov Blanket

- parents
- children
- other parents of children

So problem becomes calculating $\operatorname{Pr}(X=$ true $\mid M B(X))$

- We solve this sub-problem exactly
- Fortunately, it is easy to solve

$$
P(X)=\alpha P(X \mid \text { Parents }(X)) \prod_{Y \in \operatorname{Children}(X)} P(Y \mid \operatorname{Parents}(Y))
$$

Example

$$
P(X)=\alpha P(X \mid \operatorname{Parents}(X)) \prod_{Y \in \operatorname{Children}(X)} P(Y \mid \operatorname{Parents}(Y))
$$

$$
\begin{aligned}
& P(X \mid A, B, C)=\frac{P(X, A, B, C)}{P(A, B, C)} \\
& =\frac{P(A) P(X \mid A) P(C) P(B \mid X, C)}{P(A, B, C)} \\
& =\left[\frac{P(A) P(C)}{P(A, B, C)}\right] P(X \mid A) P(B \mid X, C) \\
& =\alpha P(X \mid A) P(B \mid X, C)
\end{aligned}
$$

78

Gibbs MCMC Summary

$$
P(X \mid E)=\frac{\text { number of samples with } X=x}{\text { total number of samples }}
$$

- Advantages:
- No samples are discarded
- No problem with samples of low weight
- Can be implemented very efficiently
- 10K samples @ second
- Disadvantages:
- Can get stuck if relationship between vars is deterministic
- Many variations devised to make MCMC more robust

Other inference methods

- Exact inference
- Junction tree
- Approximate inference
- Belief Propagation
- Variational Methods

