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B i N t kBayesian Networks

Dan Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer

1

Outline

 Probabilistic models (and inference)

 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning 

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Hidden Markov Models X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Example Bayes’ Net: Car
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Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!

Example: Independence

 N fair, independent coin flips:

h 0.5 h 0.5 h 0.5

t 0.5 t 0.5 t 0.5

Example: Coin Flips

X1 X2 Xn

 N independent coin flips

1 2 n

 No interactions between variables: 
absolute independence

Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product of two 
simpler distributions
A th f

?

B

A A  B

 Another form:

 We write: 

Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product of two 
simpler distributions
A th f

B

A A  B

 Another form:

 We write: 

?

Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions
A th f

B

A A  B

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity, Toothache}?
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Example: Independence?

T W P T W

T P

warm 0.25

cold 0 75T W P

warm sun 0.4

warm rain 0.1

cold sun 0.2

cold rain 0.3

T W

warm sun 0.15

warm rain 0.10

cold sun 0.45

cold rain 0.30

cold 0.75

W P

sun 0.6

rain 0.4

Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about fire, smoke, alarm?

Conditional Independence

Are A & B independent?   P(A|B)  ?  P(A)

A
A  B



P(A)=(.25+.5)/2 
= .375

© Daniel S. Weld 15

B

P(B)= .75

P(A|B)=(.25+.25+.5)/3
=.3333

A, B Conditionally Independent 
Given C

P(A|B,C) = P(A|C)               C = spots  

P(A|C)   =.25 
P(A|B,C)=.25

ABC          

© Daniel S. Weld 17

Example: Alarm Network

 Variables
 B: Burglary

 A: Alarm goes off

 M: Mary calls M: Mary calls

 J: John calls

 E: Earthquake!

 How big is joint distribution?
 2n-1 = 31 parameters

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0 95

Only 10 params

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99
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Example: Traffic II

 Let’s build a graphical model

 Variables
 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

A l i ti i d Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph

 Better answer: don’t make any false 
conditional independence assumptions

Example: Independence

 For this graph, you can fiddle with  (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2

All distributions

Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

X1 X2 X1 X2

h 0.5

t 0.5

1 2 1 2

h 0.5

t 0.5
h | h 0.5

t | h 0.5

h | t 0.5

t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5

t 0.5

Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 

X

Y

Z

X

Y

Z

(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution X

Y

Z

Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z independent?
 Answer: no.  

 Example: low pressure causes rain, which causes traffic.
 Knowledge about X may change belief in Z, 
 Knowledge about Z may change belief in X (via Y)
 Addendum: they could be independent: how?
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Causal Chains

 This configuration is a “causal chain”
X: Low pressure

Y: Rain

Z: Traffic

X Y Z

 Is X independent of Z given Y?

Yes!

Evidence along the chain “blocks” the influence

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

X

Y

Z

Y: Project due

X: Forum busy

Z: Lab full

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z
 Are X and Z independent given Y?

Yes!

Y: Project due

X: Forum busy

Z: Lab full

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

traffic, but they are not correlated

 Still need to prove they must be (try it!)

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

 No: seeing traffic puts the rain and the 
ballgame in competition as explanation!

 This is backwards from the other cases
 Observing an effect activates influence 

between possible causes.

traffic, but they are not correlated

 Still need to prove they must be (try it!)

 Are X and Z independent given Y?

The General Case

 Any complex example can be analyzed 
using these three canonical cases

G l ti i i BN t General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph
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Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple

Active Triples Inactive Triples

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)
 Common cause A  B  C 

where B is unobserved
 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Example: Independent?

Yes R B

T

T’

Example: Independent?

R B

L

Yes

Yes

TD

T’

Yes

Example

 Variables:
 R: Raining

 T: Traffic

 D: Roof drips

R

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

Yes

Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not 
detectable until you inspect its specific 
distribution


