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B i N t kBayesian Networks

Dan Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer

1

Outline

 Probabilistic models (and inference)

 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning 

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Hidden Markov Models X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Example Bayes’ Net: Car
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Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!

Example: Independence

 N fair, independent coin flips:

h 0.5 h 0.5 h 0.5

t 0.5 t 0.5 t 0.5

Example: Coin Flips

X1 X2 Xn

 N independent coin flips

1 2 n

 No interactions between variables: 
absolute independence

Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product of two 
simpler distributions
A th f

?

B

A A  B

 Another form:

 We write: 

Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product of two 
simpler distributions
A th f

B

A A  B

 Another form:

 We write: 

?

Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions
A th f

B

A A  B

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity, Toothache}?
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Example: Independence?

T W P T W

T P

warm 0.25

cold 0 75T W P

warm sun 0.4

warm rain 0.1

cold sun 0.2

cold rain 0.3

T W

warm sun 0.15

warm rain 0.10

cold sun 0.45

cold rain 0.30

cold 0.75

W P

sun 0.6

rain 0.4

Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about fire, smoke, alarm?

Conditional Independence

Are A & B independent?   P(A|B)  ?  P(A)

A
A  B



P(A)=(.25+.5)/2 
= .375
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B

P(B)= .75

P(A|B)=(.25+.25+.5)/3
=.3333

A, B Conditionally Independent 
Given C

P(A|B,C) = P(A|C)               C = spots  

P(A|C)   =.25 
P(A|B,C)=.25

ABC          
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Example: Alarm Network

 Variables
 B: Burglary

 A: Alarm goes off

 M: Mary calls M: Mary calls

 J: John calls

 E: Earthquake!

 How big is joint distribution?
 2n-1 = 31 parameters

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0 95

Only 10 params

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99
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Example: Traffic II

 Let’s build a graphical model

 Variables
 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

A l i ti i d Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph

 Better answer: don’t make any false 
conditional independence assumptions

Example: Independence

 For this graph, you can fiddle with  (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2

All distributions

Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

X1 X2 X1 X2

h 0.5

t 0.5

1 2 1 2

h 0.5

t 0.5
h | h 0.5

t | h 0.5

h | t 0.5

t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5

t 0.5

Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 

X

Y

Z

X

Y

Z

(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution X

Y

Z

Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z independent?
 Answer: no.  

 Example: low pressure causes rain, which causes traffic.
 Knowledge about X may change belief in Z, 
 Knowledge about Z may change belief in X (via Y)
 Addendum: they could be independent: how?
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Causal Chains

 This configuration is a “causal chain”
X: Low pressure

Y: Rain

Z: Traffic

X Y Z

 Is X independent of Z given Y?

Yes!

Evidence along the chain “blocks” the influence

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

X

Y

Z

Y: Project due

X: Forum busy

Z: Lab full

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z
 Are X and Z independent given Y?

Yes!

Y: Project due

X: Forum busy

Z: Lab full

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

traffic, but they are not correlated

 Still need to prove they must be (try it!)

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

 No: seeing traffic puts the rain and the 
ballgame in competition as explanation!

 This is backwards from the other cases
 Observing an effect activates influence 

between possible causes.

traffic, but they are not correlated

 Still need to prove they must be (try it!)

 Are X and Z independent given Y?

The General Case

 Any complex example can be analyzed 
using these three canonical cases

G l ti i i BN t General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph
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Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple

Active Triples Inactive Triples

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)
 Common cause A  B  C 

where B is unobserved
 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Example: Independent?

Yes R B

T

T’

Example: Independent?

R B

L

Yes

Yes

TD

T’

Yes

Example

 Variables:
 R: Raining

 T: Traffic

 D: Roof drips

R

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

Yes

Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not 
detectable until you inspect its specific 
distribution


