CSE 473: Artificial Intelligence Spring 2012

Bayesian Networks

Dan Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore \& Luke Zettlemoyer

Outline

- Probabilistic models (and inference)
- Bayesian Networks (BNs)
- Independence in BNs
- Efficient Inference in BNs
- Learning

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Bayes' Net Semantics

Formally:

- A set of nodes, one per variable X
- A directed, acyclic graph
- A CPT for each node
- CPT = "Conditional Probability Table"
- Collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

Probabilities in ENs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain independence assumptions
- Compare to the exact decomposition according to the chain rule!

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Independence

- N fair, independent coin flips:

$\forall x, y: P(x, y)=?$
- This says that their joint distribution factors into a product of two
- We write: $X \Perp Y$
simpler distributions

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product of two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=\boldsymbol{?}
$$

- We write: $X \Perp Y$

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write: $X \Perp Y$
- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Conditional Independence

Are $\mathrm{A} \& \mathrm{~B}$ independent? $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \leq \mathrm{P}(\mathrm{A})$

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!
- How big is joint distribution?
- $2^{\mathrm{n}}-1=31$ parameters

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$
\begin{array}{ll}
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) & X \Perp Y \mid Z \\
\forall x, y, z: P(x \mid z, y)=P(x \mid z) &
\end{array}
$$

- What about fire, smoke, alarm?

A, B Conditionally Independent Given C

 $\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{A} \mid \mathrm{C})$$\mathrm{C}=$ spots

$\mathrm{P}(\mathrm{A} \mid \mathrm{C})=.25$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C})=.25$

Example: Alarm Network
Only 10 params

B	P(B)					E		P(E)				
+b	0.001						+e	0.002				
+b				$\leftarrow \mathrm{e}$	0.998							
\leftarrow b	0.999											
						B	E	A	P(A\|B, E)			
						+b	+e	+a	0.95			
					calls	+b	+e	$\leftarrow a$	0.05			
						+b	$\leftarrow \mathrm{e}$	+a	0.94			
A	J	P(J\|A)	A	M	P(M\|	+b	$\leftarrow \mathrm{e}$	$\leftarrow a$	0.06			
+a	+j	0.9	+a	+m	0.7	\leftarrow b	+e	+a	0.29			
+a	$\leftarrow \mathrm{j}$	0.1	+a	$\leftarrow \mathrm{m}$	0.3	\leftarrow b	+e	$\leftarrow \mathrm{a}$	0.71			
$\leftarrow \mathrm{a}$	+j	0.05	+a	$+\mathrm{m}$	0.01	$\leftarrow \mathrm{b}$	$\leftarrow \mathrm{e}$	+a	0.001			
$\leftarrow \mathrm{a}$	$\leftarrow \mathrm{j}$	0.95	$\leftarrow \mathrm{\leftarrow a}$	$\leftarrow \mathrm{m}$	0.99	\leftarrow b	$\leftarrow \mathrm{e}$	$\leftarrow \mathrm{a}$	0.999			

Example: Traffic II

- Let's build a graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution(1)

Example: Coins

- Extra arcs don't prevent representing independence, just allow non-independence

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z independent?
- Answer: no.
- Example: low pressure causes rain, which causes traffic.
- Knowledge about X may change belief in Z ,
- Knowledge about Z may change belief in X (via Y)
- Addendum: they could be independent: how?

Causal Chains

- This configuration is a "causal chain"

- Is X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

Evidence along the chain "blocks" the influence

Common Parent

- Another basic configuration: two effects of the same parent
- Are X and Z independent?

Y: Project due
X: Forum busy Z: Lab full

Common Parent

- Another basic configuration: two effects of the same parent

- Are X and Z independent given Y ?

$$
\begin{array}{rlrl}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \quad \begin{array}{l}
\text { Y: Project due } \\
\text { X: Forum busy } \\
\text { Z: Lab full }
\end{array} \\
& =P(z \mid y) \quad \text { Yes! } &
\end{array}
$$

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)

X : Raining
Z: Ballgame
Y: Traffic

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

$$
\begin{aligned}
& R \Perp B \\
& R \Perp B \mid T \\
& R \Perp B \mid T^{\prime}
\end{aligned}
$$

Example: Independent?

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:
$T \Perp D$
$T \Perp D \mid R \quad$ Yes
$T \Perp D \mid R, S$

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

