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CSE 473: Artificial Intelligence Outline
Spring 2012

= Probabilistic sequence models (and inference)

Reasoning about Uncertainty

&
. = Hidden Markov Models
Hidden Markov Models « Exact Inference

= Particle Filters
Daniel Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew
Moore & Luke Zettlemoyer

Going Hunting Inference by Enumeration

= General case:

& = Evidence \{ariables: Ei...Ey=e1...¢ X1 Xoyoo. X
= Query* variable: Q :
= Hidden variables:  H, ... H, Al variables

= Wewant: P(Qley...e.)

First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:

P(Q.ey...e0) = h‘%h :\*(cg_rr, Y TR |

X1, X2,... Xy
= Finally, normalize the remaining entries to conditionalize
= Obvious problems:
= Worst-case time complexity O(d")
= Space complexity O(d") to store the joint distribution

Bayes’ Nets: Big Picture Bayes’ Net Semantics
= Two problems with using full joint distribution tables as Formally:
our probabilistic models: @ te @
= Unless there are only a few variables, the joint is WAY too big to = A set of nodes, one per variable X

represent explicitly
= Hard to learn (estimate) anything empirically about more than a
few variables at a time
= A CPT for each node
= CPT = “Conditional Probability Table”
= Collection of distributions over X, one for

= Adirected, acyclic graph

= Bayes’ nets: a technique for describing complex joint o S : P(X|A A
distributions (models) using simple, local distributions each combination of parents’ values (X|A1... An)
(conditional probabilities) P(X|ay...an)

= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Example Bayes’ Net: Car

Hidden Markov Models

= Markov chains not so useful for most agents
= Eventually you don’'t know anything anymore
= Need observations to update your beliefs

= Hidden Markov models (HMMs)
= Underlying Markov chain over states S
= You observe outputs (effects) at each time step
= POMDPs without actions (or rewards).
= As a Bayes’ net:

Hidden Markov Models
()0~
Vol

® & & ®

= Defines a joint probability distribution:
P(XII" 'sxnlElll--lEn) =
P(Xl:mEl.-n) =

[id
P(X1)P(E(Xy) [ [ P(Xil Xi—1) P(E X2)
&3
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= An HMM is defined by:
= |nitial distribution: P(X7)
= Transitions: P(X3| Xe1)
= Emissions: P(E|X)

Umbrella, |,

Ghostbusters HMM

1/9 1/9 1/9

= P(X,) = uniform
= P(X'|X) = usually move clockwise, but sometimes
move in a random direction or stay in place 19 1/9 1/9

P(E|X) = same sensor model as before: P(X)
red means close, green means far away. :

@ @ ___» 16 19,112

0 16 0

1/9 1/9 1/9

= G) E

P(X'|X=<1,2>)

P(red | 3) P(orange | 3)  P(yellow | 3) P(green | 3)

PER 0.05 0.15 0.5 0.3

HMM Computations

= Given
" jOint P(Xl:nvEl:n) @ @ -__>@

= evidence E;.,=¢€;.,
2 &) &

= Inference problems include:
= Filtering, find P(X|e;.,) for some t
= Smoothing, find P(Xe,.,) for some t
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HMM Computations

= Given
= joint P(Xl;nyEl:n)
= evidence E;.,=¢e;.,

= Inference problems include:
= Filtering, find P(X|e;.,) for all t
= Smoothing, find P(Xi|e,.,) for all t
= Most probable explanation, find
X*l:n: argmaxy,., P(Xl:nlel:n)

HMM Computations

= State = number
= T++ add sum of 2 dice
= Observation:
= Yes/no
= |ssum 75?

no no no no yes

= Most probable explanation, find
X*1:0 = ArgMaXq., P(Xynle1:n)

Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the
distribution B(X) (the belief state) over time

= We start with B(X) in an initial setting, usually uniform
= As time passes, or we get observations, we update B(X)

= The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program

Example: Robot Localization

Example from
Michael Pfeiffer

Prob 0 1
t=0
Sensor model: never more than 1 mistake
Motion model: may not execute action with small prob.

Example: Robot Localization

Prob 0 1

t=1

Example: Robot Localization

Prob 0 1

t=2




Inference Recap: Simple Cases

That's my rule!
P(Xl |61 ) N—j

‘.,'

P(xiler) = P(x1.e1)/P(e1)
xx, P(z1,e1)
= P(x1)P(e1]x1)
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Inference Recap: Simple Cases

P(X1le1) P(X2)
P(xiler) = P(z1.e1)/P(e1) P(a) = 3 P(ay,az)
ocx, Plry,er) <

=3 P(x1)P(xzlr1)
= P(z1)P(eqr|r1) m

Online Belief Updates

= Every time step, we start with current P(X | evidence)

= We update for time:

P(xiler:i—1) = Y Plw—ilers—1) - Plmilzi—_1)

. |

= We update for evidence:
P(xilers) xx Plager—1) - Plegle)

Passage of Time

= Assume we have current belief P(X | evidence to date)
B(X:) = P(Xile14)

= Then, after one time step passes: @_’@

P(Xptler) =30 P(Xpqalz) Plrrler)
Ty

= Or, compactly:
B'(X") =3 P(X'|z)B(x)

= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time
step t the belief is about, and what evidence it includes

Example: Passage of Time

Without observations, uncertainty “accumulates”

T=1 T=2 T=5

B'(X") =3 P(X'|z)B(x)

Transition model: ghosts usually go clockwise

Observations

= Assume we have current belief P(X | previous evidence):

B'(Xi41) = P(Xy41le1a)
= Then:

P(Xis1le141) x Pl | X1 )P( X ler) '

B(X;41) o P(e|X)B'(X1p1)

= Basic idea: beliefs reweighted by likelihood of evidence

= Unlike passage of time, we have to renormalize




Example: Observation
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= As we get observations, beliefs get
reweighted, uncertainty “decreases”

Before observation After observation

B(X) o P(e|X)B'(X)

The Forward Algorithm

= We want to know: Bi(X) = P(X|e1:)
= We can derive the following updates
P(zile1:y) scx Plat,eq:)
= > P(wm—1,m€1:1)

-1

=3 Play_q.e1;-1) Plat|ze—1) Pe|z)
Tp—1

= Plet|e) Y P(ao|wp—1) Plop—1.e1:4—-1)

Ti—1

= Toget p;(X)compute each entry and normalize

Example

R | Pirys

Rain,_

gy

= An HMM is defined by:
= |nitial distribution: P(X7)
= Transitions: P(X:| X))
= Emissions: P(E|X)

Umbrella,

Forward Algorithm

0.500 0.627

0.500 0.373

True 0.500 0.5!1 8 0.5’83
False 0.182 0.117
Raing /m\ Rain,

Example Pac-man

SCORE: 0

Summary: Filtering

= Filtering is the inference process of finding a distribution
over X1 given e, through e : P( X; | ey,)

= We first compute P( X, | e,): Plailer) oc Play) - Pler|r)

= Foreachtfrom2to T, we have P( X4 | €1.11)

= Elapse time: compute P( X;| €1..1)

Playlery—1) = Z P(x, 1lene—1) - P(.I';LE';_[]
Tpq

= Observe: compute P(X;| €11, €) = P( X;| e1y)

P(xiler:s) oc P(zeleri—1) - Plexy)
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Recap: Reasoning Over Time Particle Filtering
. = Sometimes |X] is too big for exact inference
= Stationary Markov models + |X| may be 0o big to even store B(X) 00 [ 01| 00
= E.g. when X is continuous
@ @ @ @ e = |X|2 may be too big to do updates 0.0 | 00 | 02
P(X1) P(X|X_q1) = Solution: approximate inference 0.0 RGN
P(E‘X) = Track samples of X, not all values
= Samples are called particles v
= Hidden Markov models X E P = Time per step is linear in the number of samples
- = But: number needed may be large °
@ @ @ ____, rain | umbrella 0.9 = In memory: list of particles, not states
: ()
rain | no umbrella 0.1 = How robot localization works in practice ~c
e @ @ @ sun | umbrella | 0.2 00 | ¢%

sun | no umbrella| 0.8

Representation: Particles Particle Filtering: Elapse Time
= Our representation of P(X) is now ) = Each particle is moved by sampling
a list of N particles (samples) its next position from the transition
= Generally, N << [X| (Y ) model .\.\
= Storing map from X to counts oTe ' = sample(P(X'|x))
would defeat the point P ... P :.'
= P(x) approximated by number of _ = This is like prior sampling — samples’ v \
particles with value x Pa(';f;)es frequencies reflect the transition probs
= So, many x will have P(x) = 0! (23) = Here, most samples move clockwise, but l
+ More particles, more accuracy 82 some move in another direction or stay in
(3.3) place .A
(3.2) (]
. i @1 ) )
For now, all particles have a @3 = This captures the passage of time °
weight of 1 @33) ® go| 00
(2.1) = If we have enough samples, close to the
exact values before and after (consistent)
Particle Filtering: Observe Particle Filtering: Observe
= How handle noisy observations? ° Slightly trickier:
= Don'tdo rejection sampling (why not?)
= Suppose sensor gives red reading? FEY ) = We don't sample the observation, we fix it e (oo
= Instead: downweight samples based on the
° ... P evidence (form of likelihood weighting) P ..? Y
wlx) = Plelr) v
B(X) x P(e|X)B'(X) M
= Note: as before, probabilities don’t sum to one,
since most have been downweighted e oo
(in fact they sum to an approximation of P(e))
° ..ID oo




Particle Filtering: Resample
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Particle Filtering Summary

old Particles:
Rather than tracking (3.3)w=0.1
weighted samples, we (2,1) w=0.9 °
resample (2.1 w=0.9
(31) w=0.4
(32)w=0.3 ° oo
N times, we choose from gi; x;gj 5
our weighted sample (31) w=0.4 ° (go|oe
distribution (i.e. draw with (2,1) w=0.9
replacement) (3,2)w=0.3 v
. . New Particles:
This is equivalent to (2.1) w=1
renormalizing the 21 w=1
distribution 1) w=1
(32 w=1
) (2,2; w=1 P P
Now the update is (21 w=1
complete for this time (L1 w=1 P
step, continue with the Sﬂ wi LY RO ®
next one @) w=1 L]

Represent current belief P(X | evidence to date)
as set of n samples (actual assignments X=x)

For each new observation e:
1. Sample transition, once for each current particle x
&' = sample(P(X'|x))
2. For each new sample x’, compute importance weights
for the new evidence e:

w(z’) = Plelz)

3. Finally, normalize by resampling the importance
weights to create N new particles

Robot Localization

= In robot localization:
= We know the map, but not the robot’s position
= Observations may be vectors of range finder readings

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique

Robot Localization

QuickTime™ and a
GIF decompressor
are needed to see this picture.

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles
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Which Algorithm? P4: Ghostbusters

" . P . Noisy distance prob
Exact filter, uniform initial beliefs = Plot: Pacman's grandfather, Grandpac, ~ True distance = 8

learned to hunt ghosts for sport.

= He was blinded by his power, but could
hear the ghosts’ banging and clanging.

= Transition Model: All ghosts move
randomly, but are sometimes biased

= Emission Model: Pacman knows a !
“noisy” distance to each ghost




