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CSE 473: Artificial Intelligence
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Reasoning about Uncertainty 

&&

Hidden Markov Models

Daniel Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer
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Outline

 Probabilistic sequence models (and inference)

 Bayesian Networks – Preview

 Markov Chains

 Hidden Markov Models

 Exact Inference

 Particle Filters

Going Hunting

4

Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables:

 We want:

All variables

 First select the entries consistent with the evidence First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn) 
 Space complexity O(dn) to store the joint distribution

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Example Bayes’ Net: Car Hidden Markov Models
 Markov chains not so useful for most agents

 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 POMDPs without actions (or rewards).  
 As a Bayes’ net:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

Hidden Markov Models

X5X2
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X1 X3 X4
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XN

EN

 Defines a joint probability distribution:

Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Ghostbusters HMM

 P(X1) = uniform

 P(X’|X) = usually move clockwise, but sometimes 
move in a random direction or stay in place

 P(E|X) = same sensor model as before:
red means close, green means far away.
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HMM Computations

 Given 
 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

X2

E1

X1 X3 X4

E1 E3 E4

Xn

En

 Inference problems include:
 Filtering, find P(Xt|e1:t) for some t
 Smoothing, find P(Xt|e1:n) for some t
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HMM Computations

 Given 
 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

X2

E1

X1 X3 X4

E1 E3 E4

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

HMM Computations

X2

E1

X1 X3 X4

E1 E3 E4

 State = number
 T++   add sum of 2 dice

 Observation:
 Yes/no

Xn

E10

 Most probable explanation, find 
x*1:n = argmaxx1:n P(x1:n|e1:n)

 Is sum 75?
no no no no yes

Filtering / Monitoring

 Filtering, or monitoring, is the task of tracking the 
distribution B(X) (the belief state) over time

 We start with B(X) in an initial setting, usually uniform

 As time passes, or we get observations, we update B(X)

 The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program

Example: Robot Localization
Example from 
Michael Pfeiffer

t=0
Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example: Robot Localization

t=1

10Prob

Example: Robot Localization

t=2

10Prob
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Inference Recap: Simple Cases

E1

X1

That’s my rule!

Inference Recap: Simple Cases

E1

X1

X2X1

Online Belief Updates

 Every time step, we start with current P(X | evidence)

 We update for time:
X2X1

 We update for evidence:
X2

E2

Passage of Time

 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes: X2X1

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time 

step t the belief is about, and what evidence it includes

Example: Passage of Time

Without observations, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise

Observations

 Assume we have current belief P(X | previous evidence):

 Then:

X1

 Or:

 Basic idea: beliefs reweighted by likelihood of evidence

 Unlike passage of time, we have to renormalize

E1
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Example: Observation

 As we get observations, beliefs get 
reweighted, uncertainty “decreases”

Before observation After observation

The Forward Algorithm

 We want to know:

 We can derive the following updates

 To get            , compute each entry and normalize

Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Forward Algorithm

Example Pac-man Summary: Filtering

 Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t )

 We first compute P( X1 | e1 ):

 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )
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Recap: Reasoning Over Time

 Stationary Markov models

X2X1 X3 X4

rain sun

0.5

0.7

0.3

0.5

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P

rain umbrella 0.9

rain no umbrella 0.1

sun umbrella 0.2

sun no umbrella 0.8

 Hidden Markov models

Particle Filtering

 Sometimes |X| is too big for exact inference
 |X| may be too big to even store B(X)
 E.g. when X is continuous
 |X|2 may be too big to do updates

 Solution: approximate inference

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of samples
 But: number needed may be large
 In memory: list of particles, not states

 How robot localization works in practice

Representation: Particles

 Our representation of P(X) is now 
a list of N particles (samples)

 Generally, N << |X|

 Storing map from X to counts 
would defeat the point

 P(x) approximated by number of 
particles with value x

 So, many x will have P(x) = 0! 

 More particles, more accuracy

 For now, all particles have a 
weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

Particle Filtering: Elapse Time

 Each particle is moved by sampling 
its next position from the transition 
model

 This is like prior sampling – samples’ 
frequencies reflect the transition probs

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If we have enough samples, close to the 

exact values before and after (consistent)

Particle Filtering: Observe

 How handle noisy observations?

 Suppose sensor gives red reading?

Particle Filtering: Observe

Slightly trickier:
 Don’t do rejection sampling (why not?)
 We don’t sample the observation, we fix it
 Instead: downweight samples based on the 

evidence (form of likelihood weighting)

 Note: as before, probabilities don’t sum to one, 
since most have been downweighted
(in fact they sum to an approximation of P(e))



5/16/2012

7

Particle Filtering: Resample

 Rather than tracking 
weighted samples, we 
resample

 N times, we choose from 
our weighted sample 
distribution (i e draw with

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1) w=0.9  
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2 1) 0 9distribution (i.e. draw with 

replacement)

 This is equivalent to 
renormalizing the 
distribution

 Now the update is 
complete for this time 
step, continue with the 
next one

(2,1) w=0.9
(3,2) w=0.3

New Particles:
(2,1) w=1
(2,1) w=1
(2,1) w=1  
(3,2) w=1
(2,2) w=1
(2,1) w=1
(1,1) w=1
(3,1) w=1
(2,1) w=1
(1,1) w=1

Particle Filtering Summary

 Represent current belief P(X | evidence to date) 
as set of n samples (actual assignments X=x)

 For each new observation e:

1. Sample transition, once for each current particle x

2. For each new sample x’, compute importance weights 
for the new evidence e:

3. Finally, normalize by resampling the importance 
weights to create N new particles 

Robot Localization

 In robot localization:
 We know the map, but not the robot’s position

 Observations may be vectors of range finder readings

 State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

 Particle filtering is a main technique

Robot Localization

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles
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Which Algorithm?

Exact filter, uniform initial beliefs

P4: Ghostbusters

 Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.  

 He was blinded by his power, but could 
h th h t ’ b i d l i

15

13

Noisy distance prob
True distance = 8

hear the ghosts’ banging and clanging.

 Transition Model: All ghosts move 
randomly, but are sometimes biased

 Emission Model: Pacman knows a 
“noisy” distance to each ghost
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