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CSE 473: Artificial Intelligence
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Reasoning about Uncertainty 

&&

Hidden Markov Models

Daniel Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer
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Outline

 Probabilistic sequence models (and inference)

 Bayesian Networks – Preview

 Markov Chains

 Hidden Markov Models

 Exact Inference

 Particle Filters

Going Hunting
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Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables:

 We want:

All variables

 First select the entries consistent with the evidence First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn) 
 Space complexity O(dn) to store the joint distribution

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Example Bayes’ Net: Car Hidden Markov Models
 Markov chains not so useful for most agents

 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 POMDPs without actions (or rewards).  
 As a Bayes’ net:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

Hidden Markov Models

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

 Defines a joint probability distribution:

Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Ghostbusters HMM

 P(X1) = uniform

 P(X’|X) = usually move clockwise, but sometimes 
move in a random direction or stay in place

 P(E|X) = same sensor model as before:
red means close, green means far away.
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HMM Computations

 Given 
 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

X2

E1

X1 X3 X4

E1 E3 E4

Xn

En

 Inference problems include:
 Filtering, find P(Xt|e1:t) for some t
 Smoothing, find P(Xt|e1:n) for some t
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HMM Computations

 Given 
 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

X2

E1

X1 X3 X4

E1 E3 E4

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

HMM Computations

X2

E1

X1 X3 X4

E1 E3 E4

 State = number
 T++   add sum of 2 dice

 Observation:
 Yes/no

Xn

E10

 Most probable explanation, find 
x*1:n = argmaxx1:n P(x1:n|e1:n)

 Is sum 75?
no no no no yes

Filtering / Monitoring

 Filtering, or monitoring, is the task of tracking the 
distribution B(X) (the belief state) over time

 We start with B(X) in an initial setting, usually uniform

 As time passes, or we get observations, we update B(X)

 The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program

Example: Robot Localization
Example from 
Michael Pfeiffer

t=0
Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example: Robot Localization

t=1

10Prob

Example: Robot Localization

t=2

10Prob
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Inference Recap: Simple Cases

E1

X1

That’s my rule!

Inference Recap: Simple Cases

E1

X1

X2X1

Online Belief Updates

 Every time step, we start with current P(X | evidence)

 We update for time:
X2X1

 We update for evidence:
X2

E2

Passage of Time

 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes: X2X1

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time 

step t the belief is about, and what evidence it includes

Example: Passage of Time

Without observations, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise

Observations

 Assume we have current belief P(X | previous evidence):

 Then:

X1

 Or:

 Basic idea: beliefs reweighted by likelihood of evidence

 Unlike passage of time, we have to renormalize

E1
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Example: Observation

 As we get observations, beliefs get 
reweighted, uncertainty “decreases”

Before observation After observation

The Forward Algorithm

 We want to know:

 We can derive the following updates

 To get            , compute each entry and normalize

Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Forward Algorithm

Example Pac-man Summary: Filtering

 Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t )

 We first compute P( X1 | e1 ):

 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )
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Recap: Reasoning Over Time

 Stationary Markov models

X2X1 X3 X4

rain sun

0.5

0.7

0.3

0.5

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P

rain umbrella 0.9

rain no umbrella 0.1

sun umbrella 0.2

sun no umbrella 0.8

 Hidden Markov models

Particle Filtering

 Sometimes |X| is too big for exact inference
 |X| may be too big to even store B(X)
 E.g. when X is continuous
 |X|2 may be too big to do updates

 Solution: approximate inference

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of samples
 But: number needed may be large
 In memory: list of particles, not states

 How robot localization works in practice

Representation: Particles

 Our representation of P(X) is now 
a list of N particles (samples)

 Generally, N << |X|

 Storing map from X to counts 
would defeat the point

 P(x) approximated by number of 
particles with value x

 So, many x will have P(x) = 0! 

 More particles, more accuracy

 For now, all particles have a 
weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

Particle Filtering: Elapse Time

 Each particle is moved by sampling 
its next position from the transition 
model

 This is like prior sampling – samples’ 
frequencies reflect the transition probs

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If we have enough samples, close to the 

exact values before and after (consistent)

Particle Filtering: Observe

 How handle noisy observations?

 Suppose sensor gives red reading?

Particle Filtering: Observe

Slightly trickier:
 Don’t do rejection sampling (why not?)
 We don’t sample the observation, we fix it
 Instead: downweight samples based on the 

evidence (form of likelihood weighting)

 Note: as before, probabilities don’t sum to one, 
since most have been downweighted
(in fact they sum to an approximation of P(e))
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Particle Filtering: Resample

 Rather than tracking 
weighted samples, we 
resample

 N times, we choose from 
our weighted sample 
distribution (i e draw with

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1) w=0.9  
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2 1) 0 9distribution (i.e. draw with 

replacement)

 This is equivalent to 
renormalizing the 
distribution

 Now the update is 
complete for this time 
step, continue with the 
next one

(2,1) w=0.9
(3,2) w=0.3

New Particles:
(2,1) w=1
(2,1) w=1
(2,1) w=1  
(3,2) w=1
(2,2) w=1
(2,1) w=1
(1,1) w=1
(3,1) w=1
(2,1) w=1
(1,1) w=1

Particle Filtering Summary

 Represent current belief P(X | evidence to date) 
as set of n samples (actual assignments X=x)

 For each new observation e:

1. Sample transition, once for each current particle x

2. For each new sample x’, compute importance weights 
for the new evidence e:

3. Finally, normalize by resampling the importance 
weights to create N new particles 

Robot Localization

 In robot localization:
 We know the map, but not the robot’s position

 Observations may be vectors of range finder readings

 State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

 Particle filtering is a main technique

Robot Localization

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles
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Which Algorithm?

Exact filter, uniform initial beliefs

P4: Ghostbusters

 Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.  

 He was blinded by his power, but could 
h th h t ’ b i d l i

15

13

Noisy distance prob
True distance = 8

hear the ghosts’ banging and clanging.

 Transition Model: All ghosts move 
randomly, but are sometimes biased

 Emission Model: Pacman knows a 
“noisy” distance to each ghost
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