CSE 473
Automated Planning

Dan Weld

(With slides by UW Al faculty & Dana Nau

I have a plan - a plan that cannot possibly fail.

- Inspector Clousseau

Popular Application

© Mausam

Overview

— Introduction & Agents

— Search, Heuristics & CSPs

— Adversarial Search

— Logical Knowledge Representation
— Planning & MDPs

— Reinforcement Learning

— Uncertainty & Bayesian Networks
— Machine Learning

— NLP & Special Topics

Planning & Logic

¢ Actions specified using first-order logic

¢ Planning implemented using SAT solver
— E.g., DPLL or WalkSAT

— Also an example of solving FOL using propositional
SAT

Logistics

e PS2 due today
e HW1 due in one week

— Parts due in between:
¢ Friday written problem
* Monday feedback on another person’s answer
* Wed revise your answer

Planning

¢ Given
— alogical description of the initial situation,
— alogical description of the goal conditions, and
— alogical description of a set of possible actions,

¢ Find
— asequence of actions (a plan of actions) that brings us

from the initial situation to a situation in which the goal
conditions hold.

©D. Weld, D. Fox 6

Example: BlocksWorld

Planning Input:

State Variables/Propositions
« Types: block --- a, b, ¢ a(gb\"(&
« (on-table a) (on-table b) (on-table c)
« (clear a) (clear b) (clear c)
¢ (arm-empty)
 (holding a) (holding b) (holding c)
e (onab)(onac)(onba)(onbc)(onca)(onchb)

on”

No. of state variables =16
No. of states = 216
+ (on-table ?b); clear (?b) No. of reachable states = ?
« (arm-empty); holding (?b)

« (on ?b1 7b2)

D. Weld, D. Fox 8

]
Planning Input: Actions
* pickup ab, pickupac, ... * pickup ?bl ?b2

)

)

)

placeab, placeac, ... * place ?b1 ?b2

. . ¢ pickup-table ?b
pickup-table a, pickup-table b, ...

¢ place-table ?b
place-table a, place-table b, ...

Total: 6 + 6 + 3+ 3 =18 “ground” actions
Total: 4 action schemata

© D. Weld, D. Fox

Planning Input: Actions (contd)

« :action pickup ?bl ?b2
:precondition

« :action pickup-table ?b
:precondition
(on-table ?b)

(on ?bl ?b2)
(clear ?b1) (clear ?b)
(arm-empty)

(arm-empty) -effect

-efiect (holding ?b)
(holding ?b1) (not (on-table ?b))
(not (on ?bl ?b2)) (not (arm-empty))
(clear ?b2)
(not (arm-empty))

D. Weld, D. Fox 10

Planning Input: Initial State

[>[0]

B]
N

(on-table a) (on-table b)
(arm-empty)

(clear c) (clear b)
(onca)

All other propositions false
* not mentioned - assumed false
¢ “Closed world assumption”

©D. Weld, D. Fox

Planning Input: Goal

[O[®[>]

D

 (on-table c) AND (on b c) AND (on a b)
« s this a state?

e In planning a goal is a set of states
¢ Like the goal test in problem solving search
« But specified declaratively (in logic) rather than with code

©D. Weld, D. Fox 12

Planning vs. Problem-Solving ?

Basic difference: Explicit, logic-based representation
* States/Situations: descriptions of the world by logical formulae
- agent can explicitly reason about the world.

e Goal conditions as logical formulae vs. goal test (black box)
- agent can reflect on its goals.

e Operators/Actions: Transformations on logical formulae
- agent can reason about the effects of actions
by inspecting the definition of its operators.

©D. Weld, D. Fox 13

One Planner Solves Many Domains
“no code required”

e

location 1 location 2

Specifying a Planning Problem

¢ Description of initial state of world
— Set of propositions

¢ Description of goal:

— E.g., Logical conjunction
— Any world satisfying conjunction is a goal

* Description of available actions

© D. Weld, D. Fox 15

Dana Nau: This work is licensed under a Creative Commons License.

Classical Planning

e Simplifying assumptions
— Atomic time
— Agent is omniscient (no sensing necessary).
— Agent is sole cause of change
— Actions have deterministic effects

¢ STRIPS representation
— World = set of true propositions (conjunction)
— Actions:
« Precondition: (conjunction of positive literals, no functions)
» Effects (conjunction of literals, no functions)
— Goal = conjunction of positive literals
on(A,B) A on(B, C)

© D. Weld, D. Fox 16

Forward World-Space Search

Initial
State

—_
N

Goal
State

/i

© Daniel 5. Weld 18

Forward State-Space Search

Initial state: set of positive ground literals
— CWA: literals not appearing are false
e Actions:

— applicable if preconditions satisfied

— add positive effect literals

— remove negative effect literals
* Goal test: does state logically satisfy goal?
e Step cost: typically 1

©D. Weld, D. Fox 19

Heuristics for State-Space Search

e Count number of false goal propositions in current state
Admissible?
NO

e Subgoal independence assumption:

— Cost of solving conjunction is sum of cost of solving each subgoal
independently

— Optimistic: ignores negative interactions
— Pessimistic: ignores redundancy

— Admissible? No
— Can you make this admissible?

©D. Weld, D. Fox 21

Heuristics for State Space Search
(contd)

¢ Delete all preconditions from actions, solve
easy relaxed problem, use length
Admissible?
YES
« :action pickup-table ?b
:precondition (and (on-table ?b)
(clear ?b)
(arm-empty))
:effect (and (holding ?b)

Planning Graph: Basic idea

e Construct a planning graph: encodes
constraints on possible plans

¢ Use this planning graph to compute an
informative heuristic (Forward A*)

¢ Planning graph can be built for each problem
in polynomial time

© D. Weld, D. Fox 26

—frotfen-table2bp)—
—{rotarm-cmptyl—
s ons
The Planning Graph
& & & &
£ . £, £, 4
level PO & level P1 & level P2 & level P3
o -4 o
level A1 level A2 level A3
7\ 7\|—|
D\ /D\ >
S AN
S ——
Note: a few noops missing.for clarity 2

Regression search
e States
¢ Operators
* Initial State

e Goal

Planning Graphs

Planning graphs consists of a seq of levels that

correspond to time steps in the plan.

— Level 0 is the initial state.

— Each level consists of a set of literals and a set of
actions that represent what might be possible at
that step in the plan

— Might be is the key to efficiency

— Records only a restricted subset of possible
negative interactions among actions.

Planning Graphs

* Alternate levels
— Literals = all those that could be true at that time
step, depending upon the actions executed at
preceding time steps.
— Actions = all those actions that could have their
preconditions satisfied at that time step, depending
on which of the literals actually hold.

e

=5

PG Example

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))

Action(Eat(Cake),
PRECOND: Have(Cake)

EFFECT: -Have(Cake) A Eaten(Cake))

Action(Bake(Cake),
PRECOND: - Have(Cake)

EFFECT: Have(Cake))

PG Example
50 AD S]
Have(Cake)
—1Eaten(Cake)

Create level 0 from initial problem state.

Graph Expansion

Proposition level O
initial conditions

Action level i
no-op for each proposition at level i-1
action for each operator instance whose

preconditions exist at level i-1

Proposition level i
effects of each no-op and action at level i

No-op-action(P),

PG Example

Sp Ao Sy

Have(Cake)
_— THave(Cake)
Eat(Cake) =

T~ Eaten{Cake)

—1Eaten(Cake)

Add all applicable actions.
Add all effects to the next state.

PRECOND: P
EFFECT: P
Have a no-op action for each ground fact
D. Weld, D. Fox 33
PG Example
50 AD S]

= Have(Cake)

Have(Cake) =)
_— THave(Cake)
Eat(Cake) =

T~ Eaten{Cake)

—Eaten(Cake) & —Eaten(Cake)

Add persistence actions (aka no-ops) to
map all literals in state S; to state S, ;.

Mutual Exclusion

Two actions are mutex if
« one clobbers the other’s effects or preconditions

« they have mutex preconditions

Two proposition are mutex if
«one is the negation of the other
«all ways of achieving them are mutex

PG Example

Sp Ao Sy
Have(Cake) & Have(Cake)
_— THave(Cake)
<_
= Eaten(Cake)
—Eaten(Cake) = —Eaten(Cake)

Identify mutual exclusions between actions
and literals based on potential conflicts.

_—{ —Have{Cake)

Eat(Cake)
Eaten{Cake)
—Eaten(Cake) & —Eaten(Cake)

* Level S, contains all literals that might result from
picking any subset of actions in A,
— Conflicts between literals that can not occur together
(as a consequence of the selection action) are
represented by mutex links.

— S1 defines multiple states and the mutex links are the constraints that
define this set of states.

—-P
© D. Weld, D. Fox 36
Cake example
Sp Ao Sy
Have(Cake) =) Have(Cake)

Cake example

S Ay S Ay Sz
Bake(Cake)
Have(Caks) o Have(Cake) = Have(Cake)
—1Have(Cake) —Have(Cake)
Eat(Cake) Eat(Cake)
Eaten(Cake) = Eaten(Cake)
— Edten(Cake) =) — Eaten(Cake) = —Eaten(Cake)

Observation 1

P P P P
ar ~q ~q ~q
ar ar

Propositions monotonically increase

(always carried forward by no-ops)

©D. Weld, D. Fox 45

Observation 2

Actions monotonically increase

©D. Weld, D. Fox 46

Observation 3

Proposition mutex relationships monotonically decreas

©D. Weld, D. Fox 47

Observation 5

Planning Graph ‘levels off".
* After some time k all levels are identical

* Because it’s a finite space, the set of literals never
decreases and mutexes don’t reappear.

© D. Weld, D. Fox 49

Heuristics based on Planning Graph

Construct planning graph starting from s
h(s) = level at which goal appears non-mutex
— Admissible?

— YES

Relaxed Planning Graph Heuristic

— Remove negative preconditions build plan. graph
— Use heuristic as above

— Admissible? YES

— More informative? NO

— Speed: FASTER

©D. Weld, D. Fox

51

Observation 4
S
NE e e

5

Action mutex relationships monotonically decrease

D. Weld, D. Fox

48

Properties of Planning Graph

If goal is absent from last level?
— Then goal cannot be achieved!

If there exists a plan to achieve goal?
— Then goal is present in the last level &
— No mutexes between conjuncts

If goal is present in last level (w/ no mutexes) ?
— There still may not exist any viable plan

D. Weld, D. Fox 50

FF

Topmost classical planner until 2009

State space local search

— Guided by relaxed planning graph

— Full best-first seach to escape plateaus
— A few other bells and whistles...

© Mausam

Planning Summary

= Problem solving algorithms that operate on explicit
propositional representations of states and actions.

= Make use of domain-independent heuristics.
= STRIPS: restrictive propositional language

Heuristic search
= forward (progression)
= backward (regression) search [didn’t cover]

Local search FF [didn’t cover]

© D. Weld, D. Fox 55

Generative Planning

Input
Description of (initial state of) world (in some KR)
Description of goal (in some KR)
Description of available actions (in some KR)

Output
Controller
E.g. Sequence of actions
E.g. Plan with loops and conditionals
E.g. Policy = f: states -> actions

© Daniel S. Weld 56

Input Representation

e Description of initial state of world
— E.g., Set of propositions:
— ((block a) (block b) (block c) (on-table a) (on-table
b) (clear a) (clear b) (clear c) (arm-empty))

e Description of goal: i.e. set of worlds or ??
— E.g., Logical conjunction
— Any world satisfying conjunction is a goal
—(and (on a b) (on b c)))

e Description of available actions

© Daniel S. Weld 57

Classical Plannjng

g —

[eXe)

L]
oo o

© Danié

Compilation to SAT

¢ |nit state
* Actions 9 7
[

* Goal

© Daniel 5. Weld 59

The ldea

¢ Suppose a plan of length n exists
¢ Encode this hypothesis in SAT

— Init state true at t,

—Goal true at T,

— Actions imply effects, etc

¢ Look for satisfying assignment
e Decode into plan

RISC: The Revolutionary Excitement

© Daniel 5. Weld 60

Space of Encodings

¢ Action Representations
— Regular
— Simply-Split
— Overloaded-Split
— Bitwise
* Frame Axioms
— Classical
— Explanitory

© Daniel S. Weld 62

Axioms
Axiom Description / Example
Init The initial state holds at t=0
Goal The goal holds at t=2n
A=PE Paint(A,Red,t) = Block(A, +-1)
Paint(A,Red,t) = Color(A, Red, t+1)
Frame
At-least-one
Exclude
Frame Axioms
¢ Classical
—VP A tif P@t-1 A
- A@t A
- A doesn’t affect P
- then P@t+1
-+ Explanator

© Daniel S. Weld 63

Action Representation

imore
vars

Representation One Propositional Example
Variable per
Regular fully-instantiated action Paint-A-Red,
Paint-A-Blue,
Move-A-Table

Simply-split fully-instantiated

action’s argument

Paint-Argl-A A
Paint-Arg2-Red

Overloaded-split fully-instantiated Act-Paint A Argl-A

argument A Arg2-Red
Bitwise Binary encodings of Bitl A ~Bit2 A
actions Bit3
Paint-A-Red = 5

more
clses

Optimization 1: Factored Splitting

- use partially-instantiated actions

HasColor-A-Blue-(t-1) * Paint-Argl-B-t *
Paint-Arg2-Red-t = HasColor-A-Blue-(t+1)

Explanatory Frames

factored

unfactored |Simple Overloaded
Variables 46 69
Clauses 30 50
Literals 20 38

Optimization 2: Types

A typeis a fluent which no actions affects.
type interference
prune impossible operator instantiations
type elimination

Type opts
No type opts
Literals Regular |Simple |Overloaded |Bitwise
Classical 27 .39 .34 .30

Explanatory .10 .97 .67 74

