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Overview

Introduction & Agents

Search, Heuristics & CSPs
Adversarial Search

Logical Knowledge Representation
Planning & MDPs

Reinforcement Learning
Uncertainty & Bayesian Networks
Machine Learning

NLP & Special Topics

Propositional. Logic vs. First Order

Objects,

Ontology Facts (P, Q) Properties,

Relations

[Variables & quantification
Sentences have structure: terms
father-of(mother-of(X)))

Syntax Atomic sentences|
Connectives

Semantics : Interpretations
Truth Tables | (\Mych more complicated)
Inference DPLL, GSAT Unification

Algorithm Fast in practice | Forward, Backward chaining
Prolog, theorem proving

Complexity NP-Complete Semi-decidable

FOL Definitions

* Constants. a,b, dog33.

Name a specific object.

- Variables: X, V.

Refer to an object without naming it.

« Functions: dad-of

Mapping from objects to objects.

+ Terms: dad-of(dog33)

Refer to objects

* Atomic Sentences. in(dad-of(dog33), food6)

Can be true or false
Correspond to propositional symbols P, Q

More Definitions

Logical connectives: and, or, not, =>

male(dan) A male(father-of(dan))
PA Q

male(dan) A male(son-of (father-of(dan)))

More Definitions

 Quantifiers:

VvV Forall
3 There exists

+ Examples

Dumbo is grey
Elephants are grey

There is a grey elephant




More Definitions

* Quantifiers:

VvV Forall

3 There exists
+ Examples

Dumbo is grey
grey(dumbo)

Elephants are grey

There is a grey elephant

More Definitions

+ Quantifiers:

Vv Forall

3 There exists
- Examples

Dumbo is grey
grey(dumbo)

Elephants are grey
v elephant(x) = grey(x)

There is a grey elephant

More Definitions

* Quantifiers:
vV Forall
3 There exists
+ Examples
Dumbo is grey
grey(dumbo)

Elephants are grey
v x elephant(x) = grey(x)

There is a grey elephant
3 x elephant(x) A grey(x)

Quantifier / Connective
Interaction

E(x) == “x is an elephant”

G(x) == “x has the col ”
1 vx E(X)/\G(X) (x) x has the color grey

2. Vx E(x) =6(x)
3. 3x E(x) A 6(x)

4. Ix E(x) =6(x)

Nested Quantifiers:
Order matters!

Vx3dy P(x,y) # JyVxP(x,y)

+ Examples
Every dog has a tail

Vd3t has(dd) ?| 3tvd has(d.P

Every dog shares a taill

Someone is loved by everyone
JxVy loves(y, x)

Wumpus world in prop logic

Let P;; be true if there is a pitin[i, j].
Let B;; be frue if there is a breeze in [i, j1.

KB:
=By

—By;

"Pits cause breezes in adjacent squares
31,1 < (PI,Z vP;1)
By = (P11 v Pspv Py1)




Wumpus world in prop logic

Let pit(i,j) be true if there is a pit in [i, j].
Let breeze(i,j) be true if breezy in [i, j1.

KB:
- pit(1,1)
— breeze(1,1)

"Pits cause breezes in adjacent squares"
Vi,j breeze(i,j) < pit(i, add(j,1)) v pit(i, add(j, -1)) v ...

Semantics

* Syntax. a description of the /ega/
arrangements of symbols
(Def “sentences")
« Semantics: what the arrangement of
symbols means in the worl

Inference

Sentences Sentences
R i & &
epresentation | & o
QD Q
__________ B B
World 2 2
Models Models
LS el 15

Satisfiability, Validity, & Entailment
+ S is valid if it is frue in all intferpretations

- S is satisfiable if it is true in some interp

+ S is unsatisfiable if it is false all interps

- S1 eml;ils s2if

forall interps where S1 is true,
S2 is also true

9 Danial

Propositional Logic: SEMANTICS

* “Interpretation” (or “possible world")

- Specifically, TRUTH ASSIGNMENTS
Assignment to each variable either T or F
Assignment of T or F to each connective

Symbols: P

R Q
j T|F
p T
Models: T T F

FT..

Models

+ Logicians often think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated
In propositional case, each model = truth assignment
Set of models can be enumerated in a truth table

+ We say mis a model of a sentence a if ais true in m
(Equivalently “m satisfies ")

« M(a)is the set of all models of a
© ThenKB faiff M(kB)< M)
E.g. KB= (PvQ) A(=P v R
agz (P\/R)( Q) A( )

First Order Logic: Models

* Depiction of one possible “real-world” model




Interpretations=Mappings

syntactic tokens > model elements
Depiction of one pfe__)ssible interpretation, assuming
unctions:

Leg(p.l)

Relations:
On(x,y) King(p)

Constants:
Richard John

Interpretations=Mappings

syntactic tokens > model elements
Another m‘rerpre'rfg’rlon, same assumptions
unctions:

Leg(p. )

Relations:
On(x,y) King(p)

Constants:
Richard John

FOL Reasoning

*+ FO Forward & Backward Chaining
+ FO Resolution
* Many other types of theorem proving
* Restricted representations
Description logics
Horn Clauses
* Compilation to SAT

Forward Chaining

+ Given
v?x lifeform(?x) => mortal(?x)
V?x mammal(?x) => lifeform(?x)
V?x dog(?x) => mammal(?x)
dog(fido)

+ Prove
mortal(fido)

Vv?x dog(?x) => mammal(?x)
dog(fido) )
mammal(fido) :

24,

Unification

+ Emphasize variables with ?
* Useful for FO inference (modus ponens, ...)
Also for compilation of FOPC -> propositional

* Unify(®, ¥) returns "mgu”
Unify(city(?a), city(kent)) returns ?a/kent

+ Substitute(expr, mapping) returns new expr
Substitute(connected(?a, ?b), {?a/kent})
returns connected(kent, ?b)

Unification Examples
* Unify(road(?a, kent), road(seattle, ?b))
* Unify(road(?a, ?a), road(seattle, kent))
* Unify(f(g(?x, dog), ?y)), f(g(cat, ?y), dog)

- Unify(f(g(?x)), f(?x))




Compilation to Prop. Logic I

* Typed Logic

Vi a,b connected(a,b)

* Universe

Cities: seattle, tacoma, enumclaw
* Equivalent propositional formula:

Compilation to Prop. Logic IT

* Universe
- Cities: seattle, tacoma, enumclaw
* Firms: IBM, Microsoft, Boeing

* First-Order formula
vcify 9 EIfirm f hGSHQ(C, f)
* Equivalent propositional formula

kva

Hey!

* You said FO Inference is semi-decidable
* But you compiled it fo SAT

Which is NP Complete

* So now we can always do the inference?!?
Tho it might take exponential time...

+ Something seems wrong here....2???

Restricted Forms of FO Logic

+ Known, Finite Universes
Compile to SAT
* Frame Systems
Ban certain types of expressions
+ Horn Clauses
Aka Prolog
+ Function-Free Horn Clauses
Aka Datalog




