CSE 473: Artificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Space of Search Strategies

- Blind Search
 - DFS, BFS, IDS
- Informed Search
 - Systematic: Uniform cost, greedy, A*, IDA*
- Stochastic: Hill climbing w/ random walk & restarts
- Constraint Satisfaction
- Backtracking=DFS, FC, k-consistency
- Adversary Search

Recap: Search Problem

- States
 - configurations of the world
- Successor function:
 - function from states to lists of triples (state, action, cost)
- Start state
- Goal test

Recap: Constraint Satisfaction

- Kind of search in which
 - States are *factored* into sets of variables
 - Search = assigning values to these variables
 - Goal test is encoded with constraints
 - → Gives *structure* to search space
 - Exploration of one part informs others
- Special techniques add speed
 - Propagation
 - Variable ordering
 - Preprocessing

Constraint Satisfaction Problems

- Subset of search problems
- State is defined by
 - Variables X_i with values from a
 - Domain D (often D depends on i)
- Goal test is a set of constraints

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Gate assignment in airports
- Transportation scheduling
- Factory scheduling
- Fault diagnosis
- ... lots more!
- Many real-world problems involve real-valued variables...

Chinese Food, Family Style

- Suppose k people...
 - Variables & Domains?
 - Constraints?

Not Chow Mein

Factoring States

Model state's (independent) parts, e.g.

Suppose every meal for n people Has n dishes plus soup

- Soup =
- Meal 1 =
- Meal 2 =

...

■ Meal n =

Chinese Constraint Network

Soup

Must be Hot&Sour

No Peanuts

Pork Dish

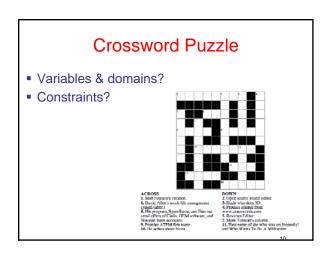
No Peanuts

No Peanuts

No Peanuts

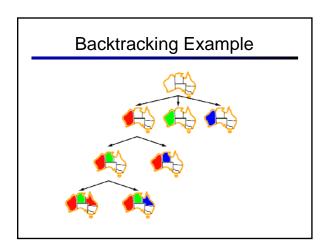
No Peanuts

No Peanuts



Standard Search Formulation

- States are defined by the values assigned so far
- Initial state: the empty assignment, {}
- Successor function:
 - assign value to an unassigned variable
- Goal test:
 - the current assignment is complete &
 - satisfies all constraints



Backtracking Search

- Note 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering of variables
 I.e., [WA = red then NT = blue] same as
 [NT = blue then WA = red]
 - What is branching factor of this search?

Backtracking Search

Note 2: Only allow legal assignments at each point

- I.e. Ignore values which conflict previous assignments
- Might need some computation to eliminate such conflicts
- "Incremental goal test"

"Backtracking Search"

Depth-first search for CSPs with these two ideas

- One variable at a time, fixed order
- Only trying consistent assignments

Is called "Backtracking Search"

- Basic uninformed algorithm for CSP
- Can solve n-queens for n H 25

Backtracking Search

function Backtrackene-Search(csp) returns solution/failure
return Recursive-Backtracking(\(\frac{1}{2}\), csp) returns soln/failure
if assignment is complete then return assignment, csp) returns soln/failure
if assignment is complete then return assignment
var \(-\text{SELECT-UNASSIGNED-VARIABLE[VaRIABLES[csp], assignment, csp)}\)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result \(-\text{RECURSIVE-Backtracking}(assignment, csp)\)
if result \(\neq\) failure then return result

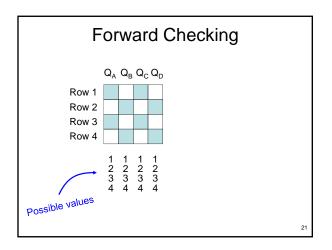
What are the choice points?

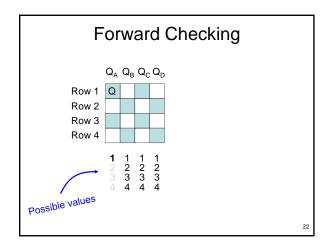
 $\mbox{remove } \{var = value\} \mbox{ from } assignment$

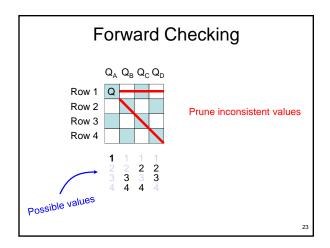
Improving Backtracking

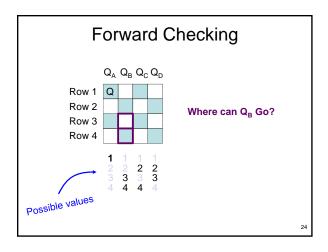
- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

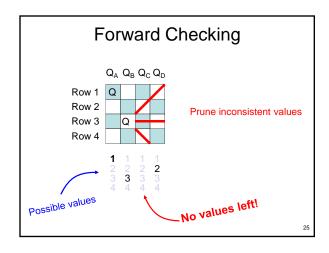
Forward Checking Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints) Idea: Terminate when any variable has no legal values WA NT Q NSW V SA T

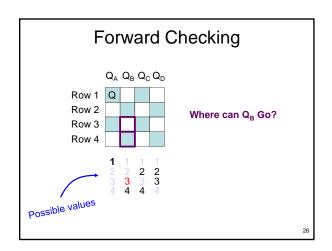


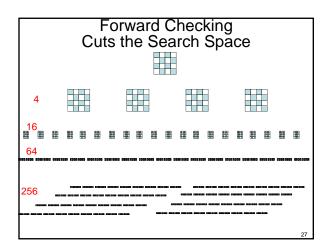


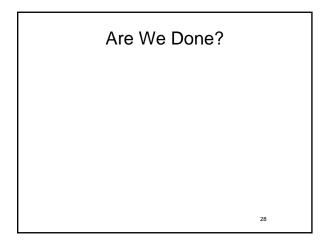


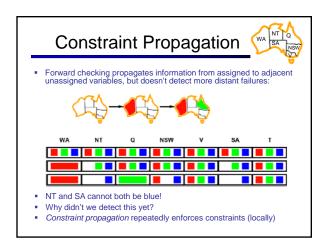


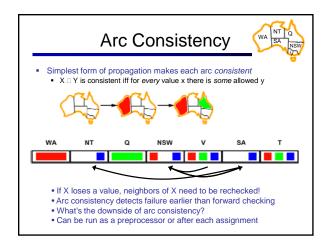




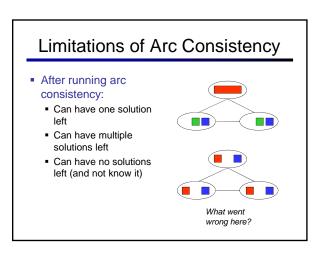






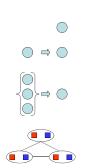


Function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables {X1, X2, ..., Xn} local variables. y unex, a quee of arcs, initially all the arcs in csp while queue is not empty do {X1, X1, Y2, ..., Xn} then {CX1, X1, Y2, ..., Xn} if REMOVE-PIRST(queue) if REMOVE-PIRST(queue) if REMOVE-INCONSISTENT-VALUES(X1, X1) to queue function REMOVE-INCONSISTENT-VALUES(X1, X1) returns true iff succeeds removed − fabe for each x in DOMANS[X1] do if no value y in DOMANS[X1] allows {x1,0} to satisfy the constraint X1 ← X1 then delete x from DOMANS[X1]: removed − true ■ Runtime: O(n²d³), can be reduced to O(n²d²) ■ ... but detecting all possible future problems is NP-hard − why? [demo: arc consistency animation]



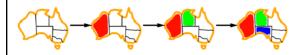
K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency):
 Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 algorithm)



Ordering: Minimum Remaining Values

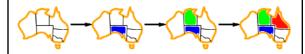
- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values



- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Degree Heuristic

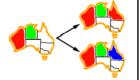
- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables



Why most rather than fewest constraints?

Ordering: Least Constraining Value

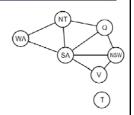
- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!



- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 280 = 4 billion years at 10 million nodes/sec
 - (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

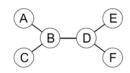


Tree-Structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

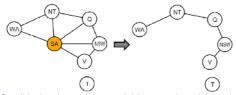
- For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²)

Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time!
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

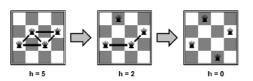


- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d°) (n-c) d²), very fast for small c

Iterative Algorithms for CSPs

- Greedy and local methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

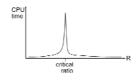


- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

ow range of the ratio
$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$



Summary

- CSPs are a special kind of search problem:
 - States defined by values (domains) of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = DFS one legal variable assigned per node
- Variable ordering and value selection heuristics help
- Forward checking prevents assignments that fail later
- Constraint propagation (e.g., arc consistency)
 - does additional work to constrain values and detect inconsistencies
- Constraint graph representation
- Allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice
 - Local (stochastic) search