
4/2/2012

1

CSE 473: Artificial Intelligence
Spring 2012

Heuristics & Pattern
Databases for Search

With many slides from
Dan Klein, Richard Korf, Stuart Russell, Andrew Moore, & UW Faculty

Dan Weld

Recap: Search Problem

 States
 configurations of the world

 Successor function:
 function from states to lists of (state, action, cost)

triplestriples

 Start state
 Goal test

General Tree Search Paradigm

function tree-search(root-node)
fringe successors(root-node)
while (notempty(fringe))

{node remove-first(fringe)
state state(node)
if goal-test(state) return solution(node)
fringe insert-all(successors(node),fringe) }

t f il

3

return failure
end tree-search

Extra Work?

 Failure to detect repeated states can cause
exponentially more work (why?)

General Graph Search Paradigm

function tree-search(root-node)
fringe successors(root-node)
explored empty
while (notempty(fringe))

{node remove-first(fringe)
state state(node)
if goal-test(state) return solution(node)

l d i t(d l d)

5

explored insert(node,explored)
fringe insert-all(successors(node),fringe, if node not in explored)

}
return failure

end tree-search

Some Hints

 Graph search is almost always better than tree
search (when not?)

 Implement your closed list as a dict or set!

 Nodes are conceptually paths, but better to
represent with a state, cost, last action, and
reference to the parent node

4/2/2012

2

Informed (Heuristic) Search

7

Idea: be smart
about what paths
to try.

Blind Search vs. Informed Search

 What’s the difference?

 How do we formally specify this? How do we formally specify this?

A node is selected for expansion based on an
evaluation function that estimates cost to goal.

8

Best-First Search
 Use an evaluation function f(n) for node n.

 Always choose the node from fringe that has
the lowest f value.
 Fringe = priority queue

9

3 5 1

4 6

Uniform Cost Search

 f(n) = cost from root

 The good: UCS is complete
and optimal!

…

c 3

c 2

c 1

 The bad:
 Explores options in every

“direction”
 No information about goal

location

Start Goal

Greedy Search

 f(n) = estimate of cost from n to goal

 A common case:
 Takes you straight to the (wrong) goal

…
b

 Worst-case: like a badly-guided DFS
…

b

A* search

 f(n) = estimated total cost of path thru n to goal

 f(n) = g(n) + h(n)
 g(n) = cost so far to reach n g(n) = cost so far to reach n
 h(n) = estimated cost from n to goal

(satisfying some important conditions)

4/2/2012

3

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from
n.

• An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Consistent Heuristics

• h(n) is consistent if
– for every node n
– for every successor n´ due to legal action a
– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also admissible.
• Theorem: If h(n) is consistent, A* using

GRAPH-SEARCH is optimal
14

n

n´ G

c(n,a,n´)
h(n´)

h(n)

When should A* terminate?

 Should we stop when we enqueue a goal?

A2 2
h 2

S

B

G

32
h = 1

h = 2

h = 0

h = 3

 No: only stop when we dequeue a goal

Which Algorithm?

18

Which Algorithm? Which Algorithm?

4/2/2012

4

Which Algorithm?

 Uniform cost search (UCS):

21

Which Algorithm?

 A*, Manhattan Heuristic:

Which Algorithm?

 Best First / Greedy, Manhattan Heuristic:

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

 Uniform-cost expanded in all directions

Start Goal

 A* expands mainly toward the goal, but does
hedge its bets to ensure optimality

Start Goal

Heuristics
It’s what makes search actually work

4/2/2012

5

Admissable Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

37© Daniel S. Weld

Where do heuristics come from?

Relaxed Problems

 Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem
 For transportation planning, relax requirement that car has

to stay on road Euclidean dist

 For blocks world distance = # move operations heuristic = For blocks world, distance = # move operations heuristic =
number of misplaced blocks

 What is relaxed problem?

38

out of place = 2, true distance to goal = 3

• Cost of optimal soln to relaxed problem cost of
optimal soln for real problem

What’s being relaxed? Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem Example: Pancake Problem

3
2

4

State space graph with costs as weights

2

2

4

3

3

2

2

3
4

3

4 3

4/2/2012

6

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

4

3
h(x)

0

2

3

3

3

4

4

3

4

4

4

Traveling Salesman Problem

44

What can be
Relaxed?

Heuristics for eight puzzle
7 2 3

8 3

5 1 6
1 2 3

7 8

4 5 6

start goal

 What can we relax?

45

Importance of Heuristics
h1 = number of tiles in wrong place

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7 2 3

8 5

4 1 6

46

8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Importance of Heuristics
h1 = number of tiles in wrong place

h2 = distances of tiles from correct loc
D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7 2 3

8 5

4 1 6

47

8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

Combining Admissible
Heuristics

 Can always take max

 Adding does not preserve admissibility in
generalgeneral

48

4/2/2012

7

Performance of IDA* on 15
Puzzle

 Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

 Optimal solution lengths average 53 moves.p g g

 400 million nodes generated on average.

 Average solution time is about 50 seconds on
current machines.

Limitation of Manhattan
Distance

 To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000
years on average.

 Assumes that each tile moves independentlyp y

 In fact, tiles interfere with each other.

 Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

4/2/2012

8

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but linear conflict adds 2
additional moves.

Linear Conflict Heuristic

 Hansson, Mayer, and Yung, 1991

 Given two tiles in their goal row, but reversed
in position, additional vertical moves can be
added to Manhattan distance.

 Still not accurate enough to solve 24-Puzzle

 We can generalize this idea further.

Pattern Database Heuristics

 Culberson and Schaeffer, 1996

 A pattern database is a complete set of such
positions, with associated number of moves.

 e.g. a 7-tile pattern database for the Fifteene.g. a 7 tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Heuristics from Pattern Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

31 moves is a lower bound on the total number of moves needed to solve
this particular state.

4/2/2012

9

Combining Multiple Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Additive Pattern Databases

 Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

 In contrast, we count only moves of the
pattern tiles, ignoring non-pattern moves. p , g g p

 If no tile belongs to more than one pattern,
then we can add their heuristic values.

 Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

1 2 3

4 5 6 74 5 6 7

8 9 10 11

12 13 15 14
The 7-tile database contains 58 million entries. The 8-tile database contains
519 million entries.

Computing the Heuristic

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Drawbacks of Standard Pattern DBs

 Since we can only take max
 Diminishing returns on additional DBs

 Would like to be able to add valuesWould like to be able to add values

66© Daniel S. Weld
Adapted from Richard Korf presentation

Disjoint Pattern DBs

 Partition tiles into disjoint sets
 For each set, precompute table
 E.g. 8 tile DB has 519 million entries

 And 7 tile DB has 58 million

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

 During search
 Look up heuristic values for each set

 Can add values without overestimating!

 Manhattan distance is a special case of this idea
where each set is a single tile

67© Daniel S. Weld
Adapted from Richard Korf presentation

4/2/2012

10

Performance

 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 15

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan
 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown
 Each DB has 128 million entries

 Without PDBs: 65,000 years

68© Daniel S. Weld
Adapted from Richard Korf presentation

