

Recap: Search Problem

- States
- configurations of the world
- Successor function:
- function from states to lists of (state, action, cost) triples
- Start state
- Goal test

General Tree Search Paradigm

function tree-search(root-node)
fringe \leftarrow successors(root-node)
while (notempty(fringe))
\{node \leftarrow remove-first(fringe)
state \leftarrow state(node)
if goal-test(state) return solution(node)
fringe \leftarrow insert-all(successors(node),fringe) \}
return failure
end tree-search
\qquad

General Graph Search Paradigm

```
function tree-search(root-node)
    fringe < successors(root-node)
    explored }\leftarrow\mathrm{ empty
    while ( notempty(fringe))
            {node < remove-first(fringe)
                state }\leftarrow\mathrm{ state(node)
                if goal-test(state) return solution(node)
                explored & insert(node, explored)
                fringe \leftarrow insert-all(successors(node),fringe, if node not in explored)
            }
return failure
end tree-search
```


Extra Work?

Failure to detect repeated states can cause exponentially more work (why?)

Some Hints

- Graph search is almost always better than tree search (when not?)
- Implement your closed list as a dict or set!
- Nodes are conceptually paths, but better to represent with a state, cost, last action, and reference to the parent node

Blind Search vs. Informed Search

- What's the difference?
- How do we formally specify this?

A node is selected for expansion based on an evaluation function that estimates cost to goal.

Best-First Search

- Use an evaluation function $f(n)$ for node n.
- Always choose the node from fringe that has the lowest f value.
- Fringe = priority queue

A* search

- $f(n)=$ estimated total cost of path thru n to goal
- $f(n)=g(n)+h(n)$
- $g(n)=$ cost so far to reach n
- $h(n)=$ estimated cost from n to goal (satisfying some important conditions)

Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n,
$h(n) \leq h^{*}(n)$, where $h^{*}(n)$ is the true cost to reach the goal state from
n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

Example: $h_{\text {SLD }}(n)$ (never overestimates the actual road distance)

- Theorem: If $h(n)$ is admissible, A^{*} using TREE-SEARCH is optimal

When should A^{*} terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal

Consistent Heuristics

- $h(n)$ is consistent if
- for every node n
- for every successor n^{\prime} due to legal action a
$-h(n)<=c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$

- Every consistent heuristic is also admissible.
- Theorem: If $h(n)$ is consistent, A^{*} using GRAPH-SEARCH is optimal

14

Heuristics

It's what makes search actually work

Admissable Heuristics

- $f(x)=g(x)+h(x)$
- g: cost so far
- h: underestimate of remaining costs

Where do heuristics come from?
© Daniel S. Weld

Relaxed Problems

- Derive admissible heuristic from exact cost of a solution to a relaxed version of problem
- For transportation planning, relax requirement that car has to stay on road \rightarrow Euclidean dist
- For blocks world, distance = \# move operations heuristic = number of misplaced blocks
- What is relaxed problem?

- Cost of optimal soln to relaxed problem \leq cost of optimal soln for real problem

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico
Christos H. PAPADIMITRIOU* \dagger
Department of Electrical Ensineering, University of Califormia, Berkeley, CA 94720, U.S.A.

```
Received }18\mathrm{ January 1078
```

Revised 28 August 1978
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_{n}. We show that $f(n) \leqslant(5 n+5) / 3$, and that $f(n)=17 n / 16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3 n / 2-1<g(n)<2 n+3$.

Example: Pancake Problem

State space graph with costs as weights

Traveling Salesman Problem

What can be
Relaxed?

44

Heuristics for eight puzzle

- What can we relax?

Performance of IDA* on 15 Puzzle

- Random 15 puzzle instances were first solved optimally using IDA* with Manhattan distance heuristic (Korf, 1985).
- Optimal solution lengths average 53 moves.
- 400 million nodes generated on average.
- Average solution time is about 50 seconds on current machines.

Limitation of Manhattan Distance

- To solve a 24-Puzzle instance, IDA* with Manhattan distance would take about 65,000 years on average.
- Assumes that each tile moves independently
- In fact, tiles interfere with each other.
- Accounting for these interactions is the key to more accurate heuristic functions.

Example: Linear Conflict

Example: Linear Conflict

Example: Linear Conflict

Manhattan distance is $2+2=4$ moves

Example: Linear Conflict

Manhattan distance is $2+2=4$ moves

Example: Linear Conflict

Manhattan distance is $2+2=4$ moves

Example: Linear Conflict

Manhattan distance is $2+2=4$ moves

Linear Conflict Heuristic

- Hansson, Mayer, and Yung, 1991
- Given two tiles in their goal row, but reversed in position, additional vertical moves can be added to Manhattan distance.
- Still not accurate enough to solve 24-Puzzle
- We can generalize this idea further.

Pattern Database Heuristics

- Culberson and Schaeffer, 1996
- A pattern database is a complete set of such positions, with associated number of moves.
- e.g. a 7-tile pattern database for the Fifteen Puzzle contains 519 million entries.

Heuristics from Pattern Databases

31 moves is a lower bound on the total number of moves needed to solve this particular state

Combining Multiple Databases

31 moves needed to solve red tiles
22 moves need to solve blue tiles
Overall heuristic is maximum of 31 moves

Additive Pattern Databases

- Culberson and Schaeffer counted all moves needed to correctly position the pattern tiles.
- In contrast, we count only moves of the pattern tiles, ignoring non-pattern moves.
- If no tile belongs to more than one pattern, then we can add their heuristic values.
- Manhattan distance is a special case of this, where each pattern contains a single tile.

Example Additive Databases

The 7 -tile database contains 58 million entries. The 8 -tile database contains 519 million entries.

Computing the Heuristic

20 moves needed to solve red tiles
25 moves needed to solve blue tiles
Overall heuristic is sum, or $20+25=45$ moves

Disjoint Pattern DBs

- Partition tiles into disjoint sets
- For each set, precompute table
- E.g. 8 tile DB has 519 million entries
- And 7 tile DB has 58 million
- During search
- Look up heuristic values for each set
- Can add values without overestimating!
- Manhattan distance is a special case of this idea where each set is a single tile
© Daniel S. Weld
Adapted from Richard Korf presentation

Performance

- 15 Puzzle: 2000x speedup vs Manhattan dist
- IDA* with the two DBs shown previously solves 15 Puzzles optimally in 30 milliseconds
- 24 Puzzle: 12 million x speedup vs Manhattan - IDA* can solve random instances in 2 days.
- Requires 4 DBs as shown - Each DB has 128 million entries
- Without PDBs: 65,000 years
© Daniel S. Weld
Adopted from Richard Korf presentation

