
3/30/2012

1

CSE 473: Artificial Intelligence
Spring 2012

Search: Cost & HeuristicsSearch: Cost & Heuristics

With slides from 
Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer

Dan Weld

Announcements

Project 1: Search
Due Wed 4/11

St t!Start!

Search thru a 

 Set of states

 Operators [and costs]

 Start state

• Input:
Problem Space / State Space Problem Space / State Space 

 Goal state [test]

• Path: start  a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Output:

Graduation?

 Getting a BS in CSE as a search problem?
(don’t think too hard)

 Space of States

4

 Operators

 Initial State

 Goal State 

Concept Learning
Labeled Training Examples

<p1,blond,32,mc,ok>
<p2,red,47,visa,ok>
<p3,blond,23,cash,ter>
<p4,…

Output: f: <pn…>  {ok, ter}p p { , }

• Input:
• Set of states
• Operators [and costs]
• Start state
• Goal state (test)

• Output:

Depth First Search

a

 Maintain stack of nodes to visit
 Check path to root to prune duplicates

 Evaluation
 Complete?

Not for infinite spaces a

b

c d

e

f g h

 Time Complexity?

 Space Complexity?

Not for infinite spaces

O(bm)

O(bm)

m



3/30/2012

2

Breadth First Search

 Maintain queue of nodes to visit

 Evaluation
 Complete?

 Time Complexity?

 Space Complexity?

Yes 

O(bd)

O(bd)

a

b

d e

c

f g h

d

Memory a Limitation?

 Suppose:
• 2 GHz CPU
• 4 GB main memory
• 100 instructions / expansion

5 b t s / n d

© Daniel S. Weld 8

• 5 bytes / node

• 200,000 expansions / sec
• Memory filled in 400 sec   …  < 7 min

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a

9

 Time Complexity?

 Space Complexity?

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a b

10

 Time Complexity?

 Space Complexity?

a    b

c d

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a b e

11

 Time Complexity?

 Space Complexity?

a    b   e

c   f d   i

g h lkj

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a b e

12

 Time Complexity?

 Space Complexity?

a    b   e

c   d   

Yes 

O(bd)

O(bd)

d



3/30/2012

3

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

13

5 1.5

10 1.2

25 1.08

100 1.02

Speed

8 Puzzle

2x2x2 Rubik’s

15 P l

105 .01 sec

106 .2 sec

BFS
Nodes   Time

Iter. Deep.
Nodes  Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

# of duplicates

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

1017 20k yrs

1020 574k yrs

1037 1023 yrs

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?
Rubik has higher branch factor
15 puzzle has greater depth

8x

1Mx

Costs on Actions

GOAL

b c

e

a2

81

2

3

3
2

2

What does BFS do?

START

d

p
q

h

f

r

9 28
3

1

4

4

15

1

… finds the shortest path in terms of number of transitions.  

It does not find the least-cost path.

Best-First Search
 Generalization of breadth-first search

 Priority queue of nodes to be explored

 Cost function f(n) applied to each node

Add initial state to priority queue

16

p y q
While queue not empty

Node = head(queue)
If goal?(node) then return node
Add children of node to queue

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq pop() returns the key with the lowest value and

 A priority queue is a data structure in which you can insert and 
retrieve (key, value) pairs with the following operations:

pq.pop() returns the key with the lowest value, and 
removes it from the queue.

 You can decrease a key’s priority by pushing it again

 Unlike a regular queue, insertions aren’t constant time, 

usually O(log n)

 We’ll need priority queues for cost-sensitive search methods

Old Friends

 Breadth First = Best First
 With f(n) = depth(n)

 Dijkstra’s Algorithm (Uniform cost) = Best First
 With f(n) = the sum of edge costs from start to n

18

 With f(n) = the sum of edge costs from start to n



3/30/2012

4

Uniform Cost Search

GOAL

b c

a2 2

3
2

Best first, where 

f(n) = “cost from start to n”

START

d

p
q

e

h

f

r

9 2

81

8
3

1

4

4

15

1

2

2

aka “Dijkstra’s Algorithm”

Uniform Cost Search

Expansion order:

S, p, d, b, e, a, r, f, e, G S

G

d

b

p q

c

e

h

a

f

r

3
9

1

1

2

8

8 1

15

1

22

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

3 9 1

164
11

5

713

8

1011

17 11

0

6
Cost 

contours
(not all shown)

Uniform Cost Search
Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

UCS

Y if finite N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y* Y O(bC*/) O(bC*/)

…
b

C*/ tiers

C*  = Optimal cost

 = Minimum cost of an action

Uniform Cost Issues

 Remember: explores 
increasing cost contours

 The good: UCS is 
complete and optimal!

…

c  3

c  2

c  1

complete and optimal!

 The bad:
 Explores options in every 

“direction”
 No information about goal 

location Start Goal

Uniform Cost: Pac-Man

 Cost of 1 for each action

 Explores all of the states, but one

Search Heuristics

 Any estimate of how close a state is to a goal

 Designed for a particular search problem

1010

5
11.2

 Examples: Manhattan distance, Euclidean distance



3/30/2012

5

Heuristics

?

?

Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Greedy Search

Expand the node that seems closest…

A

start

What can go wrong?

B

start

goal

Greedy Search

 A common case:
 Best-first takes you straight 

to the (wrong) goal

 Worst-case: like a badly-
guided DFS in the worst

…
b

guided DFS in the worst 
case
 Can explore everything
 Can get stuck in loops if no 

cycle checking

 Like DFS in completeness 
(if finite # states w/ cycle 
checking)

…
b

A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
 g(n) = sum of costs from start to n

 h(n) = estimate of lowest cost path n  goal

h(goal) = 0(g )

If h(n) is admissible and monotonic

then A* is optimal

}

A* Example

31



3/30/2012

6

A* Example

32

A* Example

33

A* Example

34

A* Example

35

Optimality of A* 

37

Optimality Continued

38



3/30/2012

7

A* Summary

 Pros

39

 Cons

Iterative-Deepening A*
 Like iterative-deepening depth-first, but...

 Depth bound modified to be an f-limit
 Start with  f-limit = h(start)

 Prune any node if f(node) > f-limit

 Next f-limit = min-cost of any node pruned

40

a

b

c

d

e

f

FL=15

FL=21

IDA* Analysis
 Complete & Optimal (ala A*)

 Space usage  depth of solution

 Each iteration is DFS - no priority queue!

 # nodes expanded relative to A*
 Depends on # unique values of heuristic function

41

 Depends on # unique values of heuristic function

 In 8 puzzle: few values  close to # A* expands

 In traveling salesman: each f value is unique
 1+2+…+n  = O(n2)    where n=nodes A* expands

if n is too big for main memory, n2 is too long to wait!

 Generates duplicate nodes in cyclic graphs

Forgetfulness

 A* used exponential memory

 How much does IDA* use?
 During a run?

I b t ?

© Daniel S. Weld 42

 In between runs?

SMA*

 Use all available memory

 Start like A*

 When memory is full…
 Erase node with highest f-value

© Daniel S. Weld 43

Erase node with highest f value

 First, backup parent with this f-value

 So… parent knows cost-bound on best child 

Beam Search
 Idea
 Best first but only keep N best items on 

priority queue

 Evaluation

© Daniel S. Weld 46

No

O(b^d)

O(b + N)

 Complete?

 Time Complexity?

 Space Complexity?



3/30/2012

8

Hill Climbing
Idea
 Always choose best child; no 

backtracking

 Beam search with |queue| = 1

Problems?
• Local maxima

“Gradient ascent”

© Daniel S. Weld 47

Local maxima

• Plateaus

• Diagonal ridges 

Randomizing Hill Climbing 

 Randomly disobeying heuristic

 Random restarts

© Daniel S. Weld 48

( heavy tailed distributions )

 Local Search Local Search

To Do:

 Look at the course website:
 http://www.cs.washington.edu/cse473/12sp

 Do the readings (Ch 3)

 Start PS1, 


