
3/30/2012

1

CSE 473: Artificial Intelligence
Spring 2012

Search: Cost & HeuristicsSearch: Cost & Heuristics

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Dan Weld

Announcements

Project 1: Search
Due Wed 4/11

St t!Start!

Search thru a

 Set of states

 Operators [and costs]

 Start state

• Input:
Problem Space / State Space Problem Space / State Space

 Goal state [test]

• Path: start a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Output:

Graduation?

 Getting a BS in CSE as a search problem?
(don’t think too hard)

 Space of States

4

 Operators

 Initial State

 Goal State

Concept Learning
Labeled Training Examples

<p1,blond,32,mc,ok>
<p2,red,47,visa,ok>
<p3,blond,23,cash,ter>
<p4,…

Output: f: <pn…> {ok, ter}p p { , }

• Input:
• Set of states
• Operators [and costs]
• Start state
• Goal state (test)

• Output:

Depth First Search

a

 Maintain stack of nodes to visit
 Check path to root to prune duplicates

 Evaluation
 Complete?

Not for infinite spaces a

b

c d

e

f g h

 Time Complexity?

 Space Complexity?

Not for infinite spaces

O(bm)

O(bm)

m

3/30/2012

2

Breadth First Search

 Maintain queue of nodes to visit

 Evaluation
 Complete?

 Time Complexity?

 Space Complexity?

Yes

O(bd)

O(bd)

a

b

d e

c

f g h

d

Memory a Limitation?

 Suppose:
• 2 GHz CPU
• 4 GB main memory
• 100 instructions / expansion

5 b t s / n d

© Daniel S. Weld 8

• 5 bytes / node

• 200,000 expansions / sec
• Memory filled in 400 sec … < 7 min

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a

9

 Time Complexity?

 Space Complexity?

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a b

10

 Time Complexity?

 Space Complexity?

a b

c d

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a b e

11

 Time Complexity?

 Space Complexity?

a b e

c f d i

g h lkj

 DFS with limit; incrementally grow limit

 Evaluation
 Complete?

Iterative Deepening Search

a b e

12

 Time Complexity?

 Space Complexity?

a b e

c d

Yes

O(bd)

O(bd)

d

3/30/2012

3

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

13

5 1.5

10 1.2

25 1.08

100 1.02

Speed

8 Puzzle

2x2x2 Rubik’s

15 P l

105 .01 sec

106 .2 sec

BFS
Nodes Time

Iter. Deep.
Nodes Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

of duplicates

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

1017 20k yrs

1020 574k yrs

1037 1023 yrs

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?
Rubik has higher branch factor
15 puzzle has greater depth

8x

1Mx

Costs on Actions

GOAL

b c

e

a2

81

2

3

3
2

2

What does BFS do?

START

d

p
q

h

f

r

9 28
3

1

4

4

15

1

… finds the shortest path in terms of number of transitions.

It does not find the least-cost path.

Best-First Search
 Generalization of breadth-first search

 Priority queue of nodes to be explored

 Cost function f(n) applied to each node

Add initial state to priority queue

16

p y q
While queue not empty

Node = head(queue)
If goal?(node) then return node
Add children of node to queue

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq pop() returns the key with the lowest value and

 A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

pq.pop() returns the key with the lowest value, and
removes it from the queue.

 You can decrease a key’s priority by pushing it again

 Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

 We’ll need priority queues for cost-sensitive search methods

Old Friends

 Breadth First = Best First
 With f(n) = depth(n)

 Dijkstra’s Algorithm (Uniform cost) = Best First
 With f(n) = the sum of edge costs from start to n

18

 With f(n) = the sum of edge costs from start to n

3/30/2012

4

Uniform Cost Search

GOAL

b c

a2 2

3
2

Best first, where

f(n) = “cost from start to n”

START

d

p
q

e

h

f

r

9 2

81

8
3

1

4

4

15

1

2

2

aka “Dijkstra’s Algorithm”

Uniform Cost Search

Expansion order:

S, p, d, b, e, a, r, f, e, G S

G

d

b

p q

c

e

h

a

f

r

3
9

1

1

2

8

8 1

15

1

22

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

3 9 1

164
11

5

713

8

1011

17 11

0

6
Cost

contours
(not all shown)

Uniform Cost Search
Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

UCS

Y if finite N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y* Y O(bC*/) O(bC*/)

…
b

C*/ tiers

C* = Optimal cost

 = Minimum cost of an action

Uniform Cost Issues

 Remember: explores
increasing cost contours

 The good: UCS is
complete and optimal!

…

c 3

c 2

c 1

complete and optimal!

 The bad:
 Explores options in every

“direction”
 No information about goal

location Start Goal

Uniform Cost: Pac-Man

 Cost of 1 for each action

 Explores all of the states, but one

Search Heuristics

 Any estimate of how close a state is to a goal

 Designed for a particular search problem

1010

5
11.2

 Examples: Manhattan distance, Euclidean distance

3/30/2012

5

Heuristics

?

?

Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Greedy Search

Expand the node that seems closest…

A

start

What can go wrong?

B

start

goal

Greedy Search

 A common case:
 Best-first takes you straight

to the (wrong) goal

 Worst-case: like a badly-
guided DFS in the worst

…
b

guided DFS in the worst
case
 Can explore everything
 Can get stuck in loops if no

cycle checking

 Like DFS in completeness
(if finite # states w/ cycle
checking)

…
b

A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
 g(n) = sum of costs from start to n

 h(n) = estimate of lowest cost path n goal

h(goal) = 0(g)

If h(n) is admissible and monotonic

then A* is optimal

}

A* Example

31

3/30/2012

6

A* Example

32

A* Example

33

A* Example

34

A* Example

35

Optimality of A*

37

Optimality Continued

38

3/30/2012

7

A* Summary

 Pros

39

 Cons

Iterative-Deepening A*
 Like iterative-deepening depth-first, but...

 Depth bound modified to be an f-limit
 Start with f-limit = h(start)

 Prune any node if f(node) > f-limit

 Next f-limit = min-cost of any node pruned

40

a

b

c

d

e

f

FL=15

FL=21

IDA* Analysis
 Complete & Optimal (ala A*)

 Space usage depth of solution

 Each iteration is DFS - no priority queue!

 # nodes expanded relative to A*
 Depends on # unique values of heuristic function

41

 Depends on # unique values of heuristic function

 In 8 puzzle: few values close to # A* expands

 In traveling salesman: each f value is unique
 1+2+…+n = O(n2) where n=nodes A* expands

if n is too big for main memory, n2 is too long to wait!

 Generates duplicate nodes in cyclic graphs

Forgetfulness

 A* used exponential memory

 How much does IDA* use?
 During a run?

I b t ?

© Daniel S. Weld 42

 In between runs?

SMA*

 Use all available memory

 Start like A*

 When memory is full…
 Erase node with highest f-value

© Daniel S. Weld 43

Erase node with highest f value

 First, backup parent with this f-value

 So… parent knows cost-bound on best child

Beam Search
 Idea
 Best first but only keep N best items on

priority queue

 Evaluation

© Daniel S. Weld 46

No

O(b^d)

O(b + N)

 Complete?

 Time Complexity?

 Space Complexity?

3/30/2012

8

Hill Climbing
Idea
 Always choose best child; no

backtracking

 Beam search with |queue| = 1

Problems?
• Local maxima

“Gradient ascent”

© Daniel S. Weld 47

Local maxima

• Plateaus

• Diagonal ridges

Randomizing Hill Climbing

 Randomly disobeying heuristic

 Random restarts

© Daniel S. Weld 48

(heavy tailed distributions)

 Local Search Local Search

To Do:

 Look at the course website:
 http://www.cs.washington.edu/cse473/12sp

 Do the readings (Ch 3)

 Start PS1,

