
3/28/2012

1

CSE 473: Artificial Intelligence
Spring 2012

Search

With slides from 
Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer

Dan Weld

Announcements

 Project 0: Python Tutorial
 Online, but not graded

 Project 1: Search
 On the web by tomorrow.

 Start early and ask questions.  It’s longer than most!

Outline

 Agents that Plan Ahead

 Search Problems

Uninformed Search Methods (part re ie for some) Uninformed Search Methods (part review for some)
 Depth-First Search
 Breadth-First Search
 Uniform-Cost Search

 Heuristic Search Methods (new for all)
 Best First / Greedy Search

Review: Rational Agents

 An agent is an entity that 
perceives and acts.

 A rational agent selects 
actions that maximize its 
utility function.  

Agent

Sensors

E
n

v
ir

Percepts

 Characteristics of the 
percepts, environment, and 
action space dictate 
techniques for selecting 
rational actions.

Search -- the environment is:
fully observable, single agent, deterministic, episodic, 
discrete

?

Actuators

ro
n

m
e

n
t

Actions

Reflex Agents

 Reflex agents:
 Choose action based 

on current percept (and 
maybe memory)

 Do not consider the 
future consequences offuture consequences of 
their actions

 Act on how the world IS

 Can a reflex agent be 
rational?

 Can a non-rational 
agent achieve goals?

Famous Reflex Agents



3/28/2012

2

Goal Based Agents

 Goal-based agents:
 Plan ahead
 Ask “what if”
 Decisions based on 

(hypothesized) 
consequences of 
actions

 Must have a model of 
how the world evolves 
in response to actions

 Act on how the world 
WOULD BE

Search thru a 

 Set of states

 Operators [and costs]

 Start state

• Input:
Problem Space / State Space Problem Space / State Space 

 Goal state [test]

• Path: start  a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Output:

Example: Simplified Pac-Man

 Input:
 A state space

 A successor function
“N” 1 0

 A start state 

 A goal test

 Output:

“N”, 1.0

“E”, 1.0

Ex: Route Planning: Romania  Bucharest

 Input:
 Set of states

 Operators [and costs]

 Start state Start state

 Goal state (test)

 Output:

Example: N Queens

 Input:
 Set of states

 Operators [and costs]

Q

Q

Q

Q

 Start state

 Goal state (test)

 Output

Ex: Blocks World
 Input:
 Set of states

 Operators [and costs]

Partially specified plans

Plan modification operators

 Start state

 Goal state (test)

 Output:

p

The null plan (no actions)

A plan which provably achieves

The desired world configuration



3/28/2012

3

Multiple Problem 
Spaces

Real World
States of the world (e.g. block configurations)   

Actions (take one world-state to another)

Robot’s Head
• Problem Space 1
• PS states = 

• models of world states
• Operators = 

• models of actions

Robot s Head
• Problem Space 2
• PS states = 

• partially spec. plan
• Operators = 

• plan modificat’n ops

Algebraic Simplification

 Input:
 Set of states

 Operators [and costs]

14

 Operators [and costs]

 Start state

 Goal state (test)

 Output:

State Space Graphs

 State space graph:

 Each node is a state

 The successor function 
is represented by arcs

G

d

b c

e

a

f Edges may be labeled 
with costs

 We can rarely build this 
graph in memory (so we 
don’t)

S

d

p
q

h

f

r

Ridiculously tiny search graph 
for a tiny search problem

State Space Sizes?

 Search Problem:
Eat all of the food

 Pacman positions:
10 x 12 = 120

 Pacman facing:
up, down, left, right

 Food Count: 30

 Ghost positions: 12

Search Strategies

 Blind Search
• Depth first search

• Breadth first search

• Iterative deepening search

 Informed Search
 Constraint Satisfaction
 Adversary Search

• Uniform cost search

Search Trees

“E”, 1.0“N”, 1.0

 A search tree:
 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 Edges are labeled with actions and costs

 For most problems, we can never actually build the whole tree



3/28/2012

4

Example: Tree Search

G

b c

e

a

State Graph:

S

d

p
q

e

h

f

r

What is the search tree?

State Graphs vs. Search Trees

S

S

G

d

b

p q

c

e

h

a

f

r

Each NODE in in the 
search tree is an entire 
PATH in the problem 
graph.

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

We construct both 
on demand – and 
we construct as 
little as possible.

Building Search Trees

 Search:
 Expand out possible plans
 Maintain a fringe of unexpanded plans
 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode is 
in the book!

Review: Depth First Search

G

b c

e

aStrategy: expand 
deepest node first

Implementation:

S

d

p
q

e

h

f

r

Implementation: 
Fringe is a LIFO 
queue (a stack)

Review: Depth First Search

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b

a
c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a



3/28/2012

5

Review: Breadth First Search

G

b c

e

aStrategy: expand 
shallowest node 
first

S

d

p
q

e

h

f

r

Implementation: 
Fringe is a FIFO 
queue

Review: Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Search

Tiers

Search Algorithm Properties

 Complete? Guaranteed to find a solution if one exists?
 Optimal? Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

V i blVariables:

n Number of states in the problem

b The maximum branching factor B
(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete Optimal Time Space

DFS Depth First 
Search

N N O(BLMAX) O(LMAX)

START

No No Infinite Infinite

 Infinite paths make DFS incomplete…
 How can we fix this?
 Check new nodes against path from S

 Infinite search spaces still a problem

GOALa

b

DFS

…
b

1 node

b nodes

b2 nodes

m tiers

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking Y if finite N O(bm) O(bm)

bm nodes

* Or graph search – next lecture.

BFS
Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

1 node

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes



3/28/2012

6

Memory a Limitation?

 Suppose:
• 4 GHz CPU
• 6 GB main memory
• 100 instructions / expansion

5 b t s / n d• 5 bytes / node

• 400,000 expansions / sec
• Memory filled in 300 sec   …  5 min

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length 1 or less.  

2. If “1” failed, do a DFS which only searches paths 
of length 2 or less.

3 If “2” f il d d DFS hi h l h th

…
b

3. If “2” failed, do a DFS which only searches paths 
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

ID

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y Y* O(bd) O(bd)

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

35

5 1.5

10 1.2

25 1.08

100 1.02

Speed

8 Puzzle

2x2x2 Rubik’s

15 P l

105 .01 sec

106 .2 sec

BFS
Nodes   Time

Iter. Deep.
Nodes  Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

# of duplicates

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

1017 20k yrs

1020 574k yrs

1037 1023 yrs

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?
Rubik has higher branch factor
15 puzzle has greater depth

8x

1Mx

When to Use Iterative Deepening

 N Queens?
Q

Q

Q

© Daniel S. Weld 37

Q


