CSE 473: Artificial Intelligence

Reinforcement Learning

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore
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Outline

= Reinforcement Learning
= Passive Learning
= TD Updates
= Q-value iteration
= Q-learning
= Linear function approximation
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Recap: MDPs

= Markov decision processes:

= States S

= Actions A

= Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount v)
Start state s, (or distribution P,)

= Quantities:
» Policy = map of states to actions
= Utility = sum of discounted rewards
= Values = expected future utility from a state
» QQ-Values = expected future utility from a g-state
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What is it doing?

Step Delay: 0.10000 [ _— Epsilon: 0.500 e

-
. : N————~

Discount: 0.800 - - Learning Rate: 0.800
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Reinforcement Learning

= Reinforcement learning:

= Still have an MDP:

= Asetof statess €S —
= A set of actions (per state) A \//,’\ /

= Amodel T(s,a,s’)
= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn
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Example: Animal Learning

= RL studied experimentally for more than 60
years in psychology

» Rewards: food, pain, hunger, drugs, etc.
* Mechanisms and sophistication debated

= Example: foraging

» Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

= Bees have a direct neural connection from nectar
iIntake measurement to motor planning area
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Example: Backgammon

= Reward only for win / loss in
terminal states, zero
otherwise

= TD-Gammon learns a function
approximation to V(s) using a
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= Combined with depth 3
search, one of the top 3
players in the world

= You could imagine training
Pacman this way...

... butit’s tricky! (It's also P3)
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What is the dot doing?

0.00 0.00
0.00

NN AR




Key ldeas for Learning

= Online vs. Batch

= Learn while exploring the world, or learn from
fixed batch of data

= Active vs. Passive

* Does the learner actively choose actions to
gather experience? or, is a fixed policy
provided?

= Model learning vs. Model free

* Do we estimate T(s,a,s’) and R(s,a,s’), or just
learn values/policy directly
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Passive Learning

= Simplified task

* You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’) 1
You are given a policy mi(s)
Goal: learn the state values (and maybe the model)
|.e., policy evaluation

= |n this case:
= |Learner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon
» This is NOT offline planning!

Monday, April 22, 13

E

E




Detour: Sampling Expectations

= Want to compute an expectation weighted by P(x):
Blif(z)]= D ()l
» Model-based: estimate P(x) from samples, compute expectation

riiry Plx) o . .
. Elfte)| 2 ). FlZ)f(2)

P(x) =count(z)/k
= Model-free: estimate expectation directly from samples

z; ~ P(x) Elf(z)] = % 2o; f(=:)

= Why does this work”? Because samples appear with the right
frequencies!
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Model-Based Learning

= |dea:
» | earn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct
= Better than direct estimation?

= Empirical model learning

= Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.qg.
“stationary noise”)
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Example: Model-Based Learning

y

= Episodes: | = | = | = ||+
(1,1) up -1 (1,1) up -1 , t ' 0
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 . f o = s
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 Z 3 4
(3,3) right -1 (3,2) up -1 v =1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>)=1/3
(4,3) exit +100 T(<2,3>, right, <3,3>)=2/2
(done)
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Model-free Learning

V7(s) — 3 T(s, 7(s), )RG5, 7(5), ) + V()

= Big idea: why bother learning T7? (S)
TS
= Question: how can we compute V if we don't 2(s)
know T7?
= Use direct estimation to sample complete 1.

trials, average rewards at end

» Use sampling to approximate the
Bellman updates, compute new values
during each learning step
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Simple Case: Direct Estimation

= Average the total reward for Z | — .- EI
every trial that visits a state: _
(1,1) up -1 (1,1) up - 2 [} t||-100
(1,2) up -1 (1,2) up
(1,2) up -1 (1,3) right -1 P == |-
(1,3) right -1 (2,3) right -1 1 2 3 4
(2,3) right -1 (3,3) right -1
(3,3) right -1 (3,2) up -1 v="1R=-"1
(3,2) up -1 (4,2) exit -100 V(1.1)~ (92 + -106) / 2 = -7
(3,3) right -1 (done)
(4,3) exit +100 V(3,3) ~ (99 + 97 +-102) / 3 =31.3
(done)
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Towards Better Model-free Learning

Review: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look- s, (@) s\
ahead using current V

= Unfortunately, need T and R

V& (s) =0

,+1()*—ZT(S m(s),s)[R(s,7(s),s") + vVi"(s')]
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Sample Avg to Replace Expectation?

Vida(s ZT(:, (s), 8 )[R(s,7(s),s") +~vV;"(s')]

= \Who needs T and R? Approximate the S
expectation with samples (drawn from T!) i(s)
sample; = R(s,m(s),s7) +vVi"(s5) S, 71(s)

bamplcg = R(s,7(8),s5) +vV"(s5)
.. ° ’ A s, As’ As;
.5'(1..-772,1)1(2 r = R(s,m(s),s1) + V" (s})

¥ 1
Vit1(s) « T Z sample;
o
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Detour: Exp. Moving Average

= Exponential moving average
» Makes recent samples more important
Tp + (l o Q) *Tp—1 T (l o Q)E Tp—2 1+ ...
l1+(1—a)+ (1 —a)?+...

£ n

= Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

Tn=(1—a) Zp_1+a- -z,

» Decreasing learning rate can give converging averages
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Model-Free Learning

V™(s) — Y T(s,7(s),s)[R(s,n(s),s") + V7 (s")]

= Big idea: why bother learning T? .
= Update V each time we experience a transition mi(s)
= Temporal difference learning (TD) S, 1(S)

= Policy still fixed!

= Move values toward value of whatever ,
successor occurs: running average! A s

sample = R(s,w(s),s) +~yV™(s")
VT(s) — (1 —a)V7™(s) + (a)sample
VT (s) «— V™ (s) + a(sample — V™ (s))
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1D Policy Evaluation

VT (s) — (1 — )V7(s) + a [R(s,7(s),8') + V™ (s")]

(1,1)Up -1 (1,1)Up -1 3 JE—— —- —- +100

(1,2) up -1 (1,2) up -1 !

(1,2) up -1 (1,3) right -1 2 | 4 b |[[-100

(1,3) right -1 (2,3) right -1

(2,3) right -1 (3,3) right -1 1 ' e | = |

(3,3) right -1 (3,2) up -1

(3.2) up -1 (4.2) exit -100 1 ‘ : tox
<) UP ’ Updates for V(<3,3>):

3,3) right -1 d

(3,3) rig (done) V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5

4.3 it +100

(4,3) exi V(<3,3>) = 0.5*-0.5 + 0.5*[-1+1*100] = 49.475

(done)

V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]
Take y = 1, o = 0.5, Vo(<4,3>)=100, Vo(<4,2>)=-100, Vo = 0 otherwise

Monday, April 22, 13



Problems with TD Value Learning

= TD value leaning is model-free for
policy evaluation (passive
learning)

= However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)
(l
Q" (s,a) = Z T(s,a,s") [R(Sv a,s’) + 7"""'*(8’)}

» |dea: learn Q-values directly
= Makes action selection model-free too!
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Active Learning

= Full reinforcement learning
* You don’t know the transitions T(s,a,s’)

You don’t know the rewards R(s,a,s’)
You can choose any actions you like

E

Goal: learn the optimal policy
... what value iteration did!

E

= |n this case:
= |earner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...
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Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q*(s;a) =)  T(s;a, s') [R(s, a,s’) +~ max Q* (¢, (1')]

= Learn Q*(s,a) values
= Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + ~ max Q(s',a’)
(1
» |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]
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Q-Learning: Fixed Policy

P
s s

.
"



Exploration / Exploitation

= Several schemes for action selection

= Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions
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Q-Learning: ¢ Greedy

0.00 0.00
0.00

ASPAASIAS



Exploration Functions

= \When to explore
» Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet) established

= Exploration function

= Takes a value estimate and a count, and returns an

optimistic utility, e.g. f(u,n) = uw + k/n (exact form not
important)

= Exploration policy (s’ )=

mE,)XQ,-(s/.(I/) VS. maxf(Q,-(.s'/.(z/).;\"(s/.u/))
a’

g

Monday, April 22, 13



Q-Learning Final Solution

= Q-learning produces tables of g-values:




Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
» Not too sensitive to how you select actions (!)

= Neat property: off-policy learning
= |learn optimal policy without following it (some caveats)

=

EEEEREN EEENEES
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Q-Learning

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
» Too many states to hold the g-tables in memory

» Instead, we want to generalize:

» |earn about some small number of training states
from experience

» Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again
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Example: Pacman

» | et's say we discover
through experience
that this state Is bad:

* In nalve g learning,
we know nothing
about related states
and their g values:

= Or even this third one!
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Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)
» Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
Number of ghosts
1/ (dist to dot)?
Is Pacman in a tunnel? (0/1)
...... etc.
Is it the exact state on this slide?

» Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)
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Linear Feature Functions

= Using a feature representation, we can write a

g function (or value function) for any state
using a few weights:

V(s) = w1 f1(s) +waf2(s) + ... + wnfn(s)

Q(s,a) = wi f1(s,a)Fwafo(s,a)4...+wnfn(s,a)

= Advantage: our experience is summed up in
a few powerful numbers

» Disadvantage: states may share features but
actually be very different in value!
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Function Approximation

Q(s,a) = wqf1(s,a)Fwsfo(s,a)+...+wnfn(s,a)

= Q-learning with linear g-functions:

transition = (s,a.r,s’)

difference = |r + v max Q(s',a')| — Q(s,a)

a
Q(s,a) — Q(s,a) + «[difference] Exact Q's
w; — w; + a [difference] f;(s,a) Approximate Q's

* Intuitive interpretation:
» Adjust weights of active features

» E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares
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Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s,a)
fpor(s, NORTH) = 0.5
fasT(s,NORTH) = 1.0

s.a) = +1

Q( ) T a = NORTH
R(s,a,s’) = —500 r 500

correction = —501

Ry A 4.0 8 [—501] 0.5
e 0 s —1.0 + X [—50 1] 1.0

Q(s,a) =3.0fpor(s,a) — 3.0fgst(s,a)
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Linear Regression

40

20

f1(x)

Prediction Prediction
:Ij — WO + ’U)]_fl (.’I;') 'g,j — WO —|— ’w]_fl (:II) —|— 'w2j'2(:1:)
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Ordinary Least Squares (OLS)

2
total error =) (y; — g)° =% (.u,- = Zu';..f;.-(-r;))
. y l‘.

2 ¢

. Error or “residual’
Observation Y

Prediction g
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Minimizing Error

Imagine we had only one point x with features f(x):

1

2
error(w) = 5 (g/ — Z u']\.f,\.(.z-))
k

0 error(w)

dwm

—_ __ (.l/ s Z U'A'f/.(:r)) f,,,‘(."l'f)
2

W <— Wm + & (y — Z IL'A._f'A.(.z’)) fm(x)
l‘.

Approximate q update:

“target” “prediction”
T [/' + v max Q(s',a") — Q(s, a)} fm(s,a)
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Overfitting

30~
25~ /\\

20~ ||

10~

| Degree 15 polynomial

-15
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Which Algorithm?

Q-learning, no features, 50 learning trials:
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Which Algorithm?

Q-learning, no features, 1000 learning trials:
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Which Algorithm?

Q-learning, simple features, 50 learning trials:
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Policy Search®
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Policy Search”

= Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions

= We'll see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

= This is the idea behind policy search, such as what
controlled the upside-down helicopter
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Policy Search”

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

* Problems:
= How do we tell the policy got better?
* Need to run many sample episodes!
= |f there are a lot of features, this can be impractical
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Policy Search”

= Advanced policy search:
» Write a stochastic (soft) policy:

Tw(8) o e2i Wifi(s,a)

= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

= Take uphill steps, recalculate derivatives, etc.
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