CSE 473: Artificial Intelligence

Reinforcement Learning

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

Monday, April 22, 13

Outline

= Reinforcement Learning
= Passive Learning
= TD Updates
= Q-value iteration
= Q-learning
= Linear function approximation

Monday, April 22, 13

Recap: MDPs

= Markov decision processes:

= States S

= Actions A

= Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount v)
Start state s, (or distribution P,)

= Quantities:
» Policy = map of states to actions
= Utility = sum of discounted rewards
= Values = expected future utility from a state
» QQ-Values = expected future utility from a g-state

Monday, April 22, 13

What is it doing?

Step Delay: 0.10000 [_— Epsilon: 0.500 e

-
. : N————~

Discount: 0.800 - - Learning Rate: 0.800

Monday, April 22, 13

Reinforcement Learning

= Reinforcement learning:

= Still have an MDP:

= Asetof statess €S —
= A set of actions (per state) A \//,’\ /

= Amodel T(s,a,s’)
= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Monday, April 22, 13

Example: Animal Learning

= RL studied experimentally for more than 60
years in psychology

» Rewards: food, pain, hunger, drugs, etc.
* Mechanisms and sophistication debated

= Example: foraging

» Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

= Bees have a direct neural connection from nectar
iIntake measurement to motor planning area

Monday, April 22, 13

Example: Backgammon

= Reward only for win / loss in
terminal states, zero
otherwise

= TD-Gammon learns a function
approximation to V(s) using a

T T R Y A

neural network EE)

T | R A

T 11 | |
! | | N | B N A YR
| . | | 1 - | |] |
] B B | | ! ! | |
! N | ! | - !
| | i | - | |1 |
| | ' § | 1 B |
. U 0 ¥ W U |
{ 0 BERER
\ | |
| {
..

25 242322212019 18 17 16 15 14 13

= Combined with depth 3
search, one of the top 3
players in the world

= You could imagine training
Pacman this way...

... butit’s tricky! (It's also P3)

Monday, April 22, 13

What is the dot doing?

0.00 0.00
0.00

NN AR

Key ldeas for Learning

= Online vs. Batch

= Learn while exploring the world, or learn from
fixed batch of data

= Active vs. Passive

* Does the learner actively choose actions to
gather experience? or, is a fixed policy
provided?

= Model learning vs. Model free

* Do we estimate T(s,a,s’) and R(s,a,s’), or just
learn values/policy directly

Monday, April 22, 13

Passive Learning

= Simplified task

* You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’) 1
You are given a policy mi(s)
Goal: learn the state values (and maybe the model)
|.e., policy evaluation

= |n this case:
= |Learner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon
» This is NOT offline planning!

Monday, April 22, 13

E

E

Detour: Sampling Expectations

= Want to compute an expectation weighted by P(x):
Blif(z)]= D ()l
» Model-based: estimate P(x) from samples, compute expectation

riiry Plx) o . .
. Elfte)| 2). FlZ)f(2)

P(x) =count(z)/k
= Model-free: estimate expectation directly from samples

z; ~ P(x) Elf(z)] = % 2o; f(=:)

= Why does this work”? Because samples appear with the right
frequencies!

Monday, April 22, 13

Model-Based Learning

= |dea:
» | earn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct
= Better than direct estimation?

= Empirical model learning

= Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.qg.
“stationary noise”)

Monday, April 22, 13

Example: Model-Based Learning

y

= Episodes: | = | = | = ||+
(1,1) up -1 (1,1) up -1 , t ' 0
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 . f o = s
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 Z 3 4
(3,3) right -1 (3,2) up -1 v =1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>)=1/3
(4,3) exit +100 T(<2,3>, right, <3,3>)=2/2
(done)

Monday, April 22, 13

Model-free Learning

V7(s) — 3 T(s, 7(s),)RG5, 7(5),) + V()

= Big idea: why bother learning T7? (S)
TS
= Question: how can we compute V if we don't 2(s)
know T7?
= Use direct estimation to sample complete 1.

trials, average rewards at end

» Use sampling to approximate the
Bellman updates, compute new values
during each learning step

Monday, April 22, 13

Simple Case: Direct Estimation

= Average the total reward for Z | — .- EI
every trial that visits a state: _
(1,1) up -1 (1,1) up - 2 [} t||-100
(1,2) up -1 (1,2) up
(1,2) up -1 (1,3) right -1 P == |-
(1,3) right -1 (2,3) right -1 1 2 3 4
(2,3) right -1 (3,3) right -1
(3,3) right -1 (3,2) up -1 v="1R=-"1
(3,2) up -1 (4,2) exit -100 V(1.1)~ (92 + -106) / 2 = -7
(3,3) right -1 (done)
(4,3) exit +100 V(3,3) ~ (99 + 97 +-102) / 3 =31.3
(done)

Monday, April 22, 13

Towards Better Model-free Learning

Review: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look- s, (@) s\
ahead using current V

= Unfortunately, need T and R

V& (s) =0

,+1()*—ZT(S m(s),s)[R(s,7(s),s") + vVi"(s')]

Monday, April 22, 13

Sample Avg to Replace Expectation?

Vida(s ZT(:, (s), 8)[R(s,7(s),s") +~vV;"(s')]

= \Who needs T and R? Approximate the S
expectation with samples (drawn from T!) i(s)
sample; = R(s,m(s),s7) +vVi"(s5) S, 71(s)

bamplcg = R(s,7(8),s5) +vV"(s5)
.. ° ’ A s, As’ As;
.5'(1..-772,1)1(2 r = R(s,m(s),s1) + V" (s})

¥ 1
Vit1(s) « T Z sample;
o

Monday, April 22, 13

Detour: Exp. Moving Average

= Exponential moving average
» Makes recent samples more important
Tp + (l o Q) *Tp—1 T (l o Q)E Tp—2 1+ ...
l1+(1—a)+ (1 —a)?+...

£ n

= Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

Tn=(1—a) Zp_1+a- -z,

» Decreasing learning rate can give converging averages

Monday, April 22, 13

Model-Free Learning

V™(s) — Y T(s,7(s),s)[R(s,n(s),s") + V7 (s")]

= Big idea: why bother learning T? .
= Update V each time we experience a transition mi(s)
= Temporal difference learning (TD) S, 1(S)

= Policy still fixed!

= Move values toward value of whatever ,
successor occurs: running average! A s

sample = R(s,w(s),s) +~yV™(s")
VT(s) — (1 —a)V7™(s) + (a)sample
VT (s) «— V™ (s) + a(sample — V™ (s))

Monday, April 22, 13

1D Policy Evaluation

VT (s) — (1 —)V7(s) + a [R(s,7(s),8') + V™ (s")]

(1,1)Up -1 (1,1)Up -1 3 JE—— —- —- +100

(1,2) up -1 (1,2) up -1 !

(1,2) up -1 (1,3) right -1 2 | 4 b |[[-100

(1,3) right -1 (2,3) right -1

(2,3) right -1 (3,3) right -1 1 ' e | = |

(3,3) right -1 (3,2) up -1

(3.2) up -1 (4.2) exit -100 1 ‘ : tox
<) UP ’ Updates for V(<3,3>):

3,3) right -1 d

(3,3) rig (done) V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5

4.3 it +100

(4,3) exi V(<3,3>) = 0.5*-0.5 + 0.5*[-1+1*100] = 49.475

(done)

V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]
Take y = 1, o = 0.5, Vo(<4,3>)=100, Vo(<4,2>)=-100, Vo = 0 otherwise

Monday, April 22, 13

Problems with TD Value Learning

= TD value leaning is model-free for
policy evaluation (passive
learning)

= However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)
(l
Q" (s,a) = Z T(s,a,s") [R(Sv a,s’) + 7"""'*(8’)}

» |dea: learn Q-values directly
= Makes action selection model-free too!

Monday, April 22, 13

Active Learning

= Full reinforcement learning
* You don’t know the transitions T(s,a,s’)

You don’t know the rewards R(s,a,s’)
You can choose any actions you like

E

Goal: learn the optimal policy
... what value iteration did!

E

= |n this case:
= |earner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

Monday, April 22, 13

Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q*(s;a) =) T(s;a, s') [R(s, a,s’) +~ max Q* (¢, (1')]

= Learn Q*(s,a) values
= Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + ~ max Q(s',a’)
(1
» |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Monday, April 22, 13

Q-Learning: Fixed Policy

P
s s

.
"

Exploration / Exploitation

= Several schemes for action selection

= Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

Monday, April 22, 13

Q-Learning: ¢ Greedy

0.00 0.00
0.00

ASPAASIAS

Exploration Functions

= \When to explore
» Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet) established

= Exploration function

= Takes a value estimate and a count, and returns an

optimistic utility, e.g. f(u,n) = uw + k/n (exact form not
important)

= Exploration policy (s’)=

mE,)XQ,-(s/.(I/) VS. maxf(Q,-(.s'/.(z/).;\"(s/.u/))
a’

g

Monday, April 22, 13

Q-Learning Final Solution

= Q-learning produces tables of g-values:

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
» Not too sensitive to how you select actions (!)

= Neat property: off-policy learning
= |learn optimal policy without following it (some caveats)

=

EEEEREN EEENEES

Monday, April 22, 13

Q-Learning

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
» Too many states to hold the g-tables in memory

» Instead, we want to generalize:

» |earn about some small number of training states
from experience

» Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again

Monday, April 22, 13

Example: Pacman

» | et's say we discover
through experience
that this state Is bad:

* In nalve g learning,
we know nothing
about related states
and their g values:

= Or even this third one!

Monday, April 22, 13

Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)
» Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
Number of ghosts
1/ (dist to dot)?
Is Pacman in a tunnel? (0/1)
...... etc.
Is it the exact state on this slide?

» Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)

Monday, April 22, 13

Linear Feature Functions

= Using a feature representation, we can write a

g function (or value function) for any state
using a few weights:

V(s) = w1 f1(s) +waf2(s) + ... + wnfn(s)

Q(s,a) = wi f1(s,a)Fwafo(s,a)4...+wnfn(s,a)

= Advantage: our experience is summed up in
a few powerful numbers

» Disadvantage: states may share features but
actually be very different in value!

Monday, April 22, 13

Function Approximation

Q(s,a) = wqf1(s,a)Fwsfo(s,a)+...+wnfn(s,a)

= Q-learning with linear g-functions:

transition = (s,a.r,s’)

difference = |r + v max Q(s',a')| — Q(s,a)

a
Q(s,a) — Q(s,a) + «[difference] Exact Q's
w; — w; + a [difference] f;(s,a) Approximate Q's

* Intuitive interpretation:
» Adjust weights of active features

» E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares

Monday, April 22, 13

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s,a)
fpor(s, NORTH) = 0.5
fasT(s,NORTH) = 1.0

s.a) = +1

Q() T a = NORTH
R(s,a,s’) = —500 r 500

correction = —501

Ry A 4.0 8 [—501] 0.5
e 0 s —1.0 + X [—50 1] 1.0

Q(s,a) =3.0fpor(s,a) — 3.0fgst(s,a)

Monday, April 22, 13

Linear Regression

40

20

f1(x)

Prediction Prediction
:Ij — WO + ’U)]_fl (.’I;') 'g,j — WO —|— ’w]_fl (:II) —|— 'w2j'2(:1:)

Monday, April 22, 13

Ordinary Least Squares (OLS)

2
total error =) (y; — g)° =% (.u,- = Zu';..f;.-(-r;))
. y l‘.

2 ¢

. Error or “residual’
Observation Y

Prediction g

Monday, April 22, 13

Minimizing Error

Imagine we had only one point x with features f(x):

1

2
error(w) = 5 (g/ — Z u']\.f,\.(.z-))
k

0 error(w)

dwm

—_ __ (.l/ s Z U'A'f/.(:r)) f,,,‘(."l'f)
2

W <— Wm + & (y — Z IL'A._f'A.(.z’)) fm(x)
l‘.

Approximate q update:

“target” “prediction”
T [/' + v max Q(s',a") — Q(s, a)} fm(s,a)

Monday, April 22, 13

Overfitting

30~
25~ /\\

20~ ||

10~

| Degree 15 polynomial

-15

Monday, April 22, 13

Which Algorithm?

Q-learning, no features, 50 learning trials:

Monday, April 22, 13

Which Algorithm?

Q-learning, no features, 1000 learning trials:

Monday, April 22, 13

Which Algorithm?

Q-learning, simple features, 50 learning trials:

Monday, April 22, 13

Policy Search®

Monday, April 22, 13

Policy Search”

= Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions

= We'll see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

= This is the idea behind policy search, such as what
controlled the upside-down helicopter

Monday, April 22, 13

Policy Search”

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

* Problems:
= How do we tell the policy got better?
* Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

Monday, April 22, 13

Policy Search”

= Advanced policy search:
» Write a stochastic (soft) policy:

Tw(8) o e2i Wifi(s,a)

= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

= Take uphill steps, recalculate derivatives, etc.

Monday, April 22, 13

