CSE 473 Propositional Logic
SAT Algorithms

Luke Zettlemoyer

(With many slides from Dan Weld, Raj Rao, Mausam,
Stuart Russell, Dieter Fox, Henry Kautz, Min-Yen Kan...)

Irrationally held truths may be more
harmful than reasoned errors.

- Thomas Huxley (1825-1895)

Propositional Logic

Syntax
— Atomic sentences: P, Q, ...

— Connectives: A, V, 0, =
Semantics
— Truth Tables

Inference

— Modus Ponens
— Resolution

— DPLL

— GSAT

Complexity

Truth tables for connectives

P Q -P [PANQ | PVQ| P = Q|P & Q
false| false | true | false | false | true true
false| true | true | false | true true false
true | false | false| false | true | false false
true | true | false| true | true true true

Types of Reasoning (Inference)

* Deduction (showing entailment, |=)

S = question

Prove that KB | =S

Typically use rules to derive new formulas from old (inference)

 Model Finding (showing satisfiability)
S = description of problem
Show S is satisfiable

Validity and Satisfiability

A sentence is valid if it is true in all models,
eg., True, AV-A A=A (ANA = B)) = B

Validity is connected to inference via the Deduction Theorem:
KB E aifandonly if (KB = «) is valid

A sentence is satisfiable if it is true in some model
e.g., AV B, C

A sentence is unsatisfiable if it is true in no models

e.g., AN—-A

Satisfiability is connected to inference via the following:
KB = «if and only if (K B A —«) is unsatisfiable
l.e., prove « by reductio ad absurdum

Inference

K B F=; o« = sentence «v can be derived from /K B by procedure ¢

Consequences of A B are a haystack; « is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: 7 is sound if
whenever K B I, «, it is also true that KB = a

Completeness: 7 is complete if
whenever K B = q, it is also true that KB ; o

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and
complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the K'B5.

Truth Tables for Inference

Bii| Bo1 | Piig| Pip| P | Pag | P31 | R | Ro | R3 | Ry | Rs | KB
false | false | false | false | false | false | false | true | true | true | true | false || false
false | false | false | false | false | false | true | true | true | false | true | false || false
false | true | false | false | false | false | false | true | true | false | true | true || false
false | true | false | false | false | false | true | true | true | true | true | true | true
false | true | false | false | false | true | false | true | true | true | true | true | true
false | true | false | false | false | true | true | true | true | true | true | true || true
false | true | false | false | true | false | false | true | false | false | true | true || false
true | true | true | true | true | true | true | false | true | true | false | true | false

Enumerate rows (different assignments to symbols),
if KB is true in row, check that « is too

Problem: exponential time and space!

Logical Equivalence

Two sentences are logically equivalent iff true in same models:

a= (Fifand only if o = F and 3 = «

(aANB) = (BAa) commutativity of A
(V@) = (BVa) commutativity of V
(aANB)AY) = (aAN(BA7)) associativity of A
(aVB)Vy) = (aV(BV7y)) associativity of V
—(—a) = « double-negation elimination
(« = B) = (-8 = —«) contraposition
(= B) = (—aV B) implication elimination
(@ < B) = ((a = B)A (B = «)) biconditional elimination
—(aApB) = (—maV —-5) De Morgan
—(aV) = (—aA—-F) De Morgan
(aN(BVY) = (aAP)V(aAy)) distributivity of A over V
(aV(BAY) = (aVB)A(aVy)) distributivity of V over A

Proof Methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
— Legitimate (sound) generation of new sentences from old
— Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search alg.
— Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in 7)
improved backtracking, e.g., Davis—Putnam—-Logemann—Loveland
heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Special Syntactic Forms

* General Form:
((gA=T1) 2 s)) A= (sAt)

e Conjunction Normal Form (CNF)
(—gqvrvs)a(=sv -t
Set notation: {(—-q, r,s), (—s, - 1)}
empty clause () = false

* Binary clauses: 1 or 2 literals per clause
(-qvr) (-sv -t

* Horn clauses: 0 or 1 positive literal per clause

(-qv-rvs) (=sv-t)
(gAr) =2 s (sat) =2 false

Propositional Logic:
Inference Algorithms

Backward & Forward Chaining } Deduction
Resolution (Proof by Contradiction)

Exhaustive Enumeration

DPLL (Davis, Putnam Loveland & Logemann) M.Od?l
Finding
GSAT

Example

KB with Horn Clauses Proof And/Or Graph

=g J
LAM = P / |
BAL = M 1>\
AN Pi=% L ,/ /L
AANB = :

A
B

c~

Inference Technique Il: Forward/
Backward Chaining

* Require sentences to be in Horn Form:
KB = conjunction of Horn clauses
— Horn clause =
e proposition symbol or
e “(conjunction of symbols) = symbol”
(i.e. clause with at most 1 positive literal)
— Eg,KB=CA(B=A)A(CAD=B)
* F/B chaining based on “Modus Ponens” rule:
Ay, ... 0, a; A... Ao, =P
B

— Sound and complete for Horn clauses

Forward chaining algorithm

function PL-FC-ENTAILS? (KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p + Pop(agenda)
unless inferred[p] do
inferred|p| < true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|c] = 0 then do
if HEAD|[¢| = ¢ then return true
Pusue(HEAD|c], agenda)
return false

Forward chaining example

Query = Q

(i.e. “Is Q true?”)

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Backward chaining

ldea: work backwards from the query g:
to prove g by BC,
check if g is known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on goal stack
Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Forward vs. backward chaining

FC is data-driven, automatic, unconscious processing,
— e.g., object recognition, routine decisions

FC may do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,

— e.g.,, How do | get an A in this class?

— e.g., What is my best exit strategy out of the classroom?

— e.g., How can | impress my date tonight?

Complexity of BC can be much less than linear in size of KB

Inference 2: Resolution
[Robinson 1965]

{lpva),(=pvpvy)} |glavpPvy)

Correctness

If S1 |-z S2 then S1 |=S2
Refutation Completeness:

If S is unsatisfiable then S |-; ()

Conversion to CNF

B, = (P1,2 v P2,1)B

1. Eliminate <, replacing a < B with (oo = B)A(B = a).
(By;= (P, vPy))A((P VP, ,)=B,,)

2. Eliminate =, replacing a = B with —av B.
(_'31,1 VP,V P2,1) A (ﬁ(Pl,Z v P2,1) v E"1,1)

3. Move - inwards using de Morgan's rules and double-
negation:
(=By1V Py VvPy) A((=Py ;v =Py,) VB)

4. Apply distributivity law (A over v) and flatten:

(=Byy VP, VP) A(=P, VB g) A(=P,y VByy)

Resolution algorithm

e Toshow KB F a, use proof by contradiction,
i.e., show KB A —a unsatisfiable

function PL-RESOLUTION(KB,) returns true or false

clauses «— the set of clauses in the CNF representation of KB A —«
new <+ { }
loop do
for each C;, C; in clauses do
resolvents < PL-RESOLVE(C}, Cj)
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false
clauses < clauses U new

Resolution

If the unicorn is mythical, then it is immortal, but if
it is not mythical, it is a reptile. If the unicorn is
either immortal or a reptile, then it is horned.

Prove: the unicorn is horned.

(- Ry H) (= H) (=1 v H)
\/K

M = myfhical (MvR) (R) Al)

I = immortal \/M
R = reptile

H = horned M\ /M)

0

Resolution as Search

e States?

* Operators

Model Checking: Truth tables for inference

Biy | Bey | Po1 | Pia | Po1 | Py | P31 | KB | o
false | false | false | false | false | false | false | false | true
false | false | false | false | false | false | true | false | true
false | true | false | false | false | false| false | false | true
false | true | false | false| false | false | true | true | true
false | true | false | false | false | true | false | true | true
false | true | false | false | false | true | true | true | true
false | true | false | false| true | false| false | false | true

true | true | true | true | true | true | true | false | false

alpha_1 = not P_{12} ("[1,2] is safe")

37

Inference 4: DPLL

(Enumeration of Partial Models)

[Davis, Putnam, Loveland & Logemann 1962]
Version 1

dpll_1 (pa) {
if (pa makes F false) return false;
if (pa makes F true) return true;
choose P in F;
if (dpll 1(pa U {P=0})) return true;
return dpll 1(pa U {P=1});

}

Returns true if F is satisfiable, false otherwise

DPLL Version 1

DPLL Version 1

@

DPLL Version 1

DPLL Version 1

DPLL Version 1

—H -4 +

DPLL Version 1

DPLL Version 1

DPLL as Search

* Search Space?

* Algorithm?

Improving DPLL

If literal L, 1s true, then clause (L, v L, v ...) 1s true
If clause C, 1is true, then C, A C, A C; A ... has the same
value as C, A C, A ...

Therefore: Okay to delete clauses containing true literals!

Improving DPLL

If literal L, 1s true, then clause (L, v L, v ...) 1s true
If clause C, 1s true, then C, A C, A C,; A ... has the same
valueas C, AC; A ...
Therefore: Okay to delete clauses containing true literals!
If literal L, 1s false, then clause (L, v L, v L, v ...) has
the same value as (L, v L, v ...)

Therefore: Okay to delete shorten containing false literals!

Improving DPLL

If literal L, 1s true, then clause (L, v L, v ...) 1s true
If clause C, 1s true, then C, A C, A C,; A ... has the same
valueas C, AC; A ...
Therefore: Okay to delete clauses containing true literals!
If literal L, 1s false, then clause (L, v L, v L, v ...) has
the same value as (L, v L, v ...)
Therefore: Okay to delete shorten containing false literals!
If literal L, 1s false, then clause (L,) 1s false

Therefore: the empty clause means false!

DPLL version 2

dpll 2(F, literal) {
remove clauses containing literal
if (F contains no clauses)return true;
shorten clauses containing -literal

if (F contains empty clause)
return false;

choose V in F;
if (dpll 2(F, -V))return true;
return dpll 2(F, V) ;

}

Partial assignment corresponding to a node is the set of chosen
literals on the path from the root to the node

DPLL Version 2

@

DPLL Version 2

DPLL Version 2

DPLL Version 2

(F v c) ®

(M) o
(~0)

DPLL Version 2

F)

(F)

(T)

DPLL Version 2

DPLL Version 2

&, o,

A
() <’*‘e,/

Representing Formulae

* CNF = Conjunctive Normal Form

— Conjunction (A) of Disjunctions (V)
* Represent as set of sets

—((A, B), (=A, C), (=C))

—((=A), (A))

—(())

— ((A))

— ()

Structure in Clauses

e Unit Literals
A literal that appears in a singleton clause
{{=b cH{-cHa -beHd bHe a —~cj}
Might as well set it true! And simplify
{{-b} {a—-beHdb}}

* Pure Literals
— A symbol that always appears with same sign
—{{a =bc}{-cd —-e} {-a -be}l{d b} {ea-c}}

Might as well set it true! And simplify
{{a =bc} {-a-be} {ea-c}}

In Other Words

Formula (L) A C, A C, A ... 1s only true when literal L 1s true

Therefore: Branch immediately on unit literals!

May view this as adding
constraint propagation
techniques into play

In Other Words

Formula (L) A C, A C, A ... 1s only true when literal L 1s true
Therefore: Branch immediately on unit literals!

If literal L does not appear negated in formula F', then setting
L true preserves satisfiability of F

Therefore: Branch immediately on pure literals!

May view this as adding
constraint propagation
techniques into play

DPLL (previous version)
Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal

i1f (F contains no clauses) return
true;

shorten clauses containing —literal
if (F contains empty clause)

return dpll (F, L);
choose V in F;
if (dpll(F, -V))return true;
return dpll (F, V) ;

DPLL (for reall)

Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal

if (F contains no clauses) return
true;

shorten clauses containing -—-1literal
if (F contains empty clause)
return false;

if (F contains a unit or pure L)
return dpll (F, L) ;

choose V in F;
if (dpll (F, —-V))return true;
return dpll (F, V);

DPLL (for real)

Compare with DPLL Version 1

DPLL (for reall)

Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal
if (F contains no clauses) return true;

shorten clauses containing -literal
if (F contains empty clause)

return false; . C\o
if (F contains a unit or pure L) (Ksﬁ\

return dpll(F, L); \(\@\) C@'Z
choose V in F; o o®
if (dpll (F, -V))return true; \ﬁgb &vab
return dpll(F, V); \(yﬂe’ Qef

} c \\\ (0\16
Qe s N
A\

Heuristic Search in DPLL

e Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

* |dea: identify a most constrained variable
— Likely to create many unit clauses

e MOM'’s heuristic:

— Most occurrences in clauses of minimum length

Success of DPLL

1962 — DPLL invented

1992 — 300 propositions

1997 — 600 propositions (satz)

Additional techniques:

— Learning conflict clauses at backtrack points

— Randomized restarts

— 2002 (zChaff) 1,000,000 propositions — encodings
of hardware verification problems

Other Ideas?

* How else could we solve SAT problems?

WalkSat (Take 1)

* Local search (Hill Climbing + Random Walk)
over space of complete truth assignments
—With prob p: flip any variable in any
unsatisfied clause
—With prob (1-p): flip best variable in any
unsat clause
* best = one which minimizes #unsatisfied clauses

Refining Greedy Random Walk

Each flip
— makes some false clauses become true
— breaks some true clauses, that become false

Suppose s1—s2 by flipping x. Then:
#unsat(s2) = #unsat(s1l) — make(sl,x) + break(s1,x)
Idea 1: if a choice breaks nothing, it’s likely good!
ldea 2: near the solution, only the break count matters

—the make count is usually 1

Walksat (Take 2)

state = random truth assignment;
while ! GoalTest(state) do
clause := random member { C | Cis false in state };
for each x in clause do compute break|x];
if exists x with break[x]=0 then var := x;
else
with probability p do
var := random member { x | x is in clause };
else
var := arg x min { break[x] | x is in clause };
endif
state[var] := 1 — state[var];
end
return state; Put everything inside of a restart loop.
Parameters: p, max_flips, max_runs

8,000

7,000 S

6,000 4

5,000 4

omputational cost
S
o
(=3
o

o
3,000 4

2,000 -

1,000

Random 3-SAT

ralio of clauses to variables

e Random 3-SAT

— sample uniformly from

space of all possible 3-
clauses

— nvariables, [clauses

e Which are the hard
instances?
— around I/n=4.3

Random 3-SAT

* Varying problem size, n Rl 7
........ 50
R T TR 40
* Complexity peak appears - =
to be largely invariant of e
algorithm 5
— backtracking algorithms like EQ-OUU'
Davis-Putnam S
] 0004 e e e
— local search procedures like o e e]
GSAT 0_u.uuuuslsuausaesIe335E;:::xI::Z:::::::I::::::::I::I::::::::::I::::::::::
1 2 3 4 5 6 7 B8
° What’s SO Special abOUt ratio of clauses to variables

4.37

percent satisfiable

Random 3-SAT

100 ouoouuuuuung"!”":'
L]]
5‘0
75 L
91
.4
9
:o"'
. ¢ 4
501 variables KN
orsannians h) e 4
mumn40 .o. . o
'
25 30 MY
omm00020 ‘. o°.
v
svenone |) et v ,
'.] 00. y o -
[} L4
0 I | |]“*:a:...:I:::sa:.:..li.:.::m:
1 2 3 4 5 6 7

ratio of clauses to varnables

B

Complexity peak coincides
with solubility transition

— 1/n < 4.3 problems under-
constrained and SAT

— |/n > 4.3 problems over-
constrained and UNSAT

— |/n=4.3, problems on “knife-
edge” between SAT and
UNSAT

Prop. Logic Themes

* Expressiveness

Expressive but awkward
No notion of objects, properties, or relations

Number of propositions is fixed

e Tractability

NP in general
Completeness / speed tradeoff
Horn clauses, binary clauses

