CSE 473 Propositional Logic
SAT Algorithms

Luke Zettlemoyer

(With many slides from Dan Weld, Raj Rao, Mausam,
Stuart Russell, Dieter Fox, Henry Kautz, Min-Yen Kan...)

Irrationally held truths may be more
harmful than reasoned errors.

- Thomas Huxley (1825-1895)



Propositional Logic

Syntax
— Atomic sentences: P, Q, ...

— Connectives: A, V, 0, =
Semantics
— Truth Tables

Inference

— Modus Ponens
— Resolution

— DPLL

— GSAT

Complexity



Truth tables for connectives

P Q -P [ PANQ | PVQ| P = Q|P & Q
false| false | true | false | false | true true
false| true | true | false | true true false
true | false | false| false | true | false false
true | true | false| true | true true true




Types of Reasoning (Inference)

* Deduction (showing entailment, |=)

S = question

Prove that KB | =S

Typically use rules to derive new formulas from old (inference)

 Model Finding (showing satisfiability)
S = description of problem
Show S is satisfiable



Validity and Satisfiability

A sentence is valid if it is true in all models,
eg., True, AV-A A=A (ANA = B)) = B

Validity is connected to inference via the Deduction Theorem:
KB E aifandonly if (KB = «) is valid

A sentence is satisfiable if it is true in some model
e.g., AV B, C

A sentence is unsatisfiable if it is true in no models

e.g., AN—-A

Satisfiability is connected to inference via the following:
KB = «if and only if (K B A —«) is unsatisfiable
l.e., prove « by reductio ad absurdum



Inference

K B F=; o« = sentence «v can be derived from /K B by procedure ¢

Consequences of A B are a haystack; « is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: 7 is sound if
whenever K B I, «, it is also true that KB = a

Completeness: 7 is complete if
whenever K B = q, it is also true that KB ; o

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and
complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the K'B5.



Truth Tables for Inference

Bii| Bo1 | Piig| Pip| P | Pag | P31 | R | Ro | R3 | Ry | Rs | KB
false | false | false | false | false | false | false | true | true | true | true | false || false
false | false | false | false | false | false | true | true | true | false | true | false || false
false | true | false | false | false | false | false | true | true | false | true | true || false
false | true | false | false | false | false | true | true | true | true | true | true | true
false | true | false | false | false | true | false | true | true | true | true | true | true
false | true | false | false | false | true | true | true | true | true | true | true || true
false | true | false | false | true | false | false | true | false | false | true | true || false
true | true | true | true | true | true | true | false | true | true | false | true | false

Enumerate rows (different assignments to symbols),
if KB is true in row, check that « is too

Problem: exponential time and space!




Logical Equivalence

Two sentences are logically equivalent iff true in same models:

a= (Fifand only if o = F and 3 = «

(aANB) = (BAa) commutativity of A
(V@) = (BVa) commutativity of V
(aANB)AY) = (aAN(BA7)) associativity of A
(aVB)Vy) = (aV(BV7y)) associativity of V
—(—a) = « double-negation elimination
(« = B) = (-8 = —«) contraposition
( = B) = (—aV B) implication elimination
(@ < B) = ((a = B)A (B = «)) biconditional elimination
—(aApB) = (—maV —-5) De Morgan
—(aV ) = (—aA—-F) De Morgan
(aN(BVY) = (aAP)V(aAy)) distributivity of A over V
(aV(BAY) = (aVB)A(aVy)) distributivity of V over A




Proof Methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
— Legitimate (sound) generation of new sentences from old
— Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search alg.
— Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in 7)
improved backtracking, e.g., Davis—Putnam—-Logemann—Loveland
heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms



Special Syntactic Forms

* General Form:
((gA=T1) 2 s)) A= (sAt)

e Conjunction Normal Form (CNF)
(—gqvrvs)a(=sv -t
Set notation: {(—-q, r,s), (—s, - 1)}
empty clause () = false

* Binary clauses: 1 or 2 literals per clause
(-qvr) (-sv -t

* Horn clauses: 0 or 1 positive literal per clause

(-qv-rvs) (=sv-t)
(gAr) =2 s (sat) =2 false



Propositional Logic:
Inference Algorithms

Backward & Forward Chaining } Deduction
Resolution (Proof by Contradiction)

Exhaustive Enumeration

DPLL (Davis, Putnam Loveland & Logemann) M.Od?l
Finding
GSAT



Example

KB with Horn Clauses Proof And/Or Graph

=g J
LAM = P / |
BAL = M 1>\
AN Pi=% L ,/ /L
AANB = :

A
B

c~




Inference Technique Il: Forward/
Backward Chaining

* Require sentences to be in Horn Form:
KB = conjunction of Horn clauses
— Horn clause =
e proposition symbol or
e “(conjunction of symbols) = symbol”
(i.e. clause with at most 1 positive literal)
— Eg,KB=CA(B=A)A(CAD=B)
* F/B chaining based on “Modus Ponens” rule:
Ay, ... 0, a; A... Ao, =P
B

— Sound and complete for Horn clauses




Forward chaining algorithm

function PL-FC-ENTAILS? (KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p + Pop(agenda)
unless inferred[p] do
inferred|p| < true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|c] = 0 then do
if HEAD|[¢| = ¢ then return true
Pusue(HEAD|c], agenda)
return false




Forward chaining example

Query = Q

(i.e. “Is Q true?”)




Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Backward chaining

ldea: work backwards from the query g:
to prove g by BC,
check if g is known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on goal stack
Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed



Backward chaining example




Backward chaining example
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Backward chaining example




Backward chaining example




Forward vs. backward chaining

FC is data-driven, automatic, unconscious processing,
— e.g., object recognition, routine decisions

FC may do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,

— e.g.,, How do | get an A in this class?

— e.g., What is my best exit strategy out of the classroom?

— e.g., How can | impress my date tonight?

Complexity of BC can be much less than linear in size of KB



Inference 2: Resolution
[Robinson 1965]

{lpva),(=pvpvy)} |glavpPvy)

Correctness

If S1 |-z S2 then S1 |=S2
Refutation Completeness:

If S is unsatisfiable then S |-; ()



Conversion to CNF

B, = (P1,2 v P2,1)B

1. Eliminate <, replacing a < B with (oo = B)A(B = a).
(By;= (P, vPy))A((P VP, ,)=B,,)

2. Eliminate =, replacing a = B with —av B.
(_'31,1 VP,V P2,1) A (ﬁ(Pl,Z v P2,1) v E"1,1)

3. Move - inwards using de Morgan's rules and double-
negation:
(=By1V Py VvPy) A((=Py ;v =Py,) VB )

4. Apply distributivity law (A over v) and flatten:

(=Byy VP, VP ) A(=P, VB g) A(=P,y VByy)



Resolution algorithm

e Toshow KB F a, use proof by contradiction,
i.e., show KB A —a unsatisfiable

function PL-RESOLUTION(KB, ) returns true or false

clauses «— the set of clauses in the CNF representation of KB A —«
new <+ { }
loop do
for each C;, C; in clauses do
resolvents < PL-RESOLVE(C}, Cj)
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false
clauses < clauses U new




Resolution

If the unicorn is mythical, then it is immortal, but if
it is not mythical, it is a reptile. If the unicorn is
either immortal or a reptile, then it is horned.

Prove: the unicorn is horned.

(- Ry H) (= H) (=1 v H)
\/K

M = myfhical (MvR) ( R) Al)

I = immortal \/M
R = reptile

H = horned M\ /M)

0



Resolution as Search

e States?

* Operators



Model Checking: Truth tables for inference

Biy | Bey | Po1 | Pia | Po1 | Py | P31 | KB | o
false | false | false | false | false | false | false | false | true
false | false | false | false | false | false | true | false | true
false | true | false | false | false | false| false | false | true
false | true | false | false| false | false | true | true | true
false | true | false | false | false | true | false | true | true
false | true | false | false | false | true | true | true | true
false | true | false | false| true | false| false | false | true

true | true | true | true | true | true | true | false | false

alpha_1 = not P_{12} ("[1,2] is safe")

37



Inference 4: DPLL

(Enumeration of Partial Models)

[Davis, Putnam, Loveland & Logemann 1962]
Version 1

dpll_1 (pa) {
if (pa makes F false) return false;
if (pa makes F true) return true;
choose P in F;
if (dpll 1(pa U {P=0})) return true;
return dpll 1(pa U {P=1});

}

Returns true if F is satisfiable, false otherwise



DPLL Version 1



DPLL Version 1
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DPLL Version 1




DPLL as Search

* Search Space?

* Algorithm?



Improving DPLL

If literal L, 1s true, then clause (L, v L, v ...) 1s true
If clause C, 1is true, then C, A C, A C; A ... has the same
value as C, A C, A ...

Therefore: Okay to delete clauses containing true literals!



Improving DPLL

If literal L, 1s true, then clause (L, v L, v ...) 1s true
If clause C, 1s true, then C, A C, A C,; A ... has the same
valueas C, AC; A ...
Therefore: Okay to delete clauses containing true literals!
If literal L, 1s false, then clause (L, v L, v L, v ...) has
the same value as (L, v L, v ...)

Therefore: Okay to delete shorten containing false literals!



Improving DPLL

If literal L, 1s true, then clause (L, v L, v ...) 1s true
If clause C, 1s true, then C, A C, A C,; A ... has the same
valueas C, AC; A ...
Therefore: Okay to delete clauses containing true literals!
If literal L, 1s false, then clause (L, v L, v L, v ...) has
the same value as (L, v L, v ...)
Therefore: Okay to delete shorten containing false literals!
If literal L, 1s false, then clause (L,) 1s false

Therefore: the empty clause means false!



DPLL version 2

dpll 2(F, literal) {
remove clauses containing literal
if (F contains no clauses)return true;
shorten clauses containing -literal

if (F contains empty clause)
return false;

choose V in F;
if (dpll 2(F, -V))return true;
return dpll 2(F, V) ;

}

Partial assignment corresponding to a node is the set of chosen
literals on the path from the root to the node



DPLL Version 2

@
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DPLL Version 2
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DPLL Version 2
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DPLL Version 2
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Representing Formulae

* CNF = Conjunctive Normal Form

— Conjunction (A) of Disjunctions (V)
* Represent as set of sets

—((A, B), ( =A, C), (=C))

—(( =A), (A))

—(())

— ((A))

— ()



Structure in Clauses

e Unit Literals
A literal that appears in a singleton clause
{{=b cH{-cHa -beHd bHe a —~cj}
Might as well set it true! And simplify
{{-b}  {a—-beHdb}}

* Pure Literals
— A symbol that always appears with same sign
—{{a =bc}{-cd —-e} {-a -be}l{d b} {ea-c}}

Might as well set it true! And simplify
{{a =bc} {-a-be} {ea-c}}



In Other Words

Formula (L) A C, A C, A ... 1s only true when literal L 1s true

Therefore: Branch immediately on unit literals!

May view this as adding
constraint propagation
techniques into play



In Other Words

Formula (L) A C, A C, A ... 1s only true when literal L 1s true
Therefore: Branch immediately on unit literals!

If literal L does not appear negated in formula F', then setting
L true preserves satisfiability of F

Therefore: Branch immediately on pure literals!

May view this as adding
constraint propagation
techniques into play



DPLL (previous version)
Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal

i1f (F contains no clauses) return
true;

shorten clauses containing —literal
if (F contains empty clause)

return dpll (F, L);
choose V in F;
if (dpll(F, -V))return true;
return dpll (F, V) ;



DPLL (for reall)

Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal

if (F contains no clauses) return
true;

shorten clauses containing -—-1literal
if (F contains empty clause)
return false;

if (F contains a unit or pure L)
return dpll (F, L) ;

choose V in F;
if (dpll (F, —-V))return true;
return dpll (F, V);



DPLL (for real)




Compare with DPLL Version 1




DPLL (for reall)

Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal
if (F contains no clauses) return true;

shorten clauses containing -literal
if (F contains empty clause)

return false; . C\o
if (F contains a unit or pure L) (Ksﬁ\

return dpll(F, L); \(\@\) C@'Z
choose V in F; o o®
if (dpll (F, -V))return true; \ﬁgb &vab
return dpll(F, V); \(yﬂe’ Qef

} c \\\ (0\16
Qe s N
A\



Heuristic Search in DPLL

e Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

* |dea: identify a most constrained variable
— Likely to create many unit clauses

e MOM'’s heuristic:

— Most occurrences in clauses of minimum length



Success of DPLL

1962 — DPLL invented

1992 — 300 propositions

1997 — 600 propositions (satz)

Additional techniques:

— Learning conflict clauses at backtrack points

— Randomized restarts

— 2002 (zChaff) 1,000,000 propositions — encodings
of hardware verification problems



Other Ideas?

* How else could we solve SAT problems?



WalkSat (Take 1)

* Local search (Hill Climbing + Random Walk)
over space of complete truth assignments
—With prob p: flip any variable in any
unsatisfied clause
—With prob (1-p): flip best variable in any
unsat clause
* best = one which minimizes #unsatisfied clauses



Refining Greedy Random Walk

Each flip
— makes some false clauses become true
— breaks some true clauses, that become false

Suppose s1—s2 by flipping x. Then:
#unsat(s2) = #unsat(s1l) — make(sl,x) + break(s1,x)
Idea 1: if a choice breaks nothing, it’s likely good!
ldea 2: near the solution, only the break count matters

—the make count is usually 1



Walksat (Take 2)

state = random truth assignment;
while ! GoalTest(state) do
clause := random member { C | Cis false in state };
for each x in clause do compute break|x];
if exists x with break[x]=0 then var := x;
else
with probability p do
var := random member { x | x is in clause };
else
var := arg x min { break[x] | x is in clause };
endif
state[var] := 1 — state[var];
end
return state; Put everything inside of a restart loop.
Parameters: p, max_flips, max_runs
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Random 3-SAT

ralio of clauses to variables

e Random 3-SAT

— sample uniformly from

space of all possible 3-
clauses

— nvariables, [ clauses

e Which are the hard
instances?
— around I/n=4.3



Random 3-SAT

* Varying problem size, n Rl 7
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Random 3-SAT
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Complexity peak coincides
with solubility transition

— 1/n < 4.3 problems under-
constrained and SAT

— |/n > 4.3 problems over-
constrained and UNSAT

— |/n=4.3, problems on “knife-
edge” between SAT and
UNSAT



Prop. Logic Themes

* Expressiveness

Expressive but awkward
No notion of objects, properties, or relations

Number of propositions is fixed

e Tractability

NP in general
Completeness / speed tradeoff
Horn clauses, binary clauses



