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Neural Networks and  

Ensemble Learning 
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What if you want your neural 
network to predict continuous 

outputs rather than +1/-1 (i.e., 
perform regression)? 

E.g., Teaching a network to drive 

Image Source: Wikimedia Commons 
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Sigmoid output function: 

Parameter  controls 

the slope 
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Continuous Outputs with 
Sigmoid Networks 
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Learning the weights  

Given: Training data (input u, desired output d) 

Problem: How do we learn the weights w? 

Idea: Minimize squared error between network’s 
output and desired output: 
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Starting from random values for w, want to 

change w so that E(w) is minimized – How? 
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Learning by Gradient-Descent 
(opposite of “Hill-Climbing”) 

Change w so that E(w) is minimized 

• Use Gradient Descent: Change w in proportion to 
–dE/dw  (why?) 
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Derivative of 
sigmoid 

delta = error 

Also known as the “delta rule” or 

“LMS (least mean square) rule” 
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But wait! 

This rule is for a one layer network 

• One layer networks are not that interesting!!  

 (remember XOR?)  

What if we have multiple 

layers? 
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Learning Multilayer Networks 
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Start with random weights W, w 

 

Given input vector u, network 

produces output vector v 

 

Use gradient descent to find W 

and w that minimize total error 

over all output units (labeled i):  
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This leads to the famous “Backpropagation” learning rule 
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Backpropagation: Output Weights 
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Learning rule for hidden-output weights W: 
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{gradient descent} 
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Backpropagation: Hidden Weights 
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Learning rule for input-hidden weights w: 
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Examples: Pole Balancing and Backing up a Truck 
(courtesy of Keith Grochow) 

• Neural network learns to balance a pole on a cart 

• Input: xcart, vcart, θpole, vpole 

• Output: New force on cart 

 

 

• Network learns to back a truck into a loading dock 

• Input: x, y, θ of truck 

• Output: Steering angle 

 

xcart 

vcart 

vpole 

θpole 

../CSE 528-13/NN demo.exe
../CSE 528-13/NN demo.exe
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Ensemble Learning 

Sometimes each learning technique yields a different 
“hypothesis” (function) 

 

But no perfect hypothesis… 

 

Could we combine several imperfect hypotheses to get 
a better hypothesis? 

 



Why Ensemble Learning? 
 

Wisdom of the Crowds… 
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Example 

This line is one simple classifier saying that  

everything to the left is + and everything to the right is - 

Combine 3 linear classifiers 

 More complex classifier 
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Analogies: 

• Elections combine voters’ choices to pick a good 
 candidate (hopefully) 

• Committees combine experts’ opinions to make 
 better decisions 

• Students working together on a capstone project 

 

Intuitions: 

 Individuals make mistakes but the “majority” may 
 be less likely to  

Individuals often have partial knowledge; a 
 committee can pool expertise to make better 
 decisions 

 

Ensemble Learning: 
Motivation 
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Ensemble Technique 1: Bagging 

Combine hypotheses (classifiers) via 
majority voting 



Bagging: Details 

 1. Generate m new training datasets by sampling with 

replacement from the given dataset 

2. Train m classifiers h1,…,hm (e.g., decision trees), 

one from each newly generated dataset 

3. Classify a new input by running it through the m 

classifiers and choosing the class that receives the 

most “votes”  

Example: Random forest = Bagging with m 

decision tree classifiers, each tree constructed 

from random subset of attributes 
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Bagging: Analysis 

Error probability went down from 0.1 to 0.01! 
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Weighted Majority Voting 

In practice, hypotheses rarely independent 

 

Some hypotheses have less errors than others  
all votes are not equal! 

 

Idea: Let’s take a weighted majority 

 

 How do we compute the weights? 
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Next Time 

• Weighted Majority Ensemble Classification 

• Boosting 

• Survey of AI Applications 

• To Do:  

• Project 4 due tonight! 

• Finish Chapter 18 


