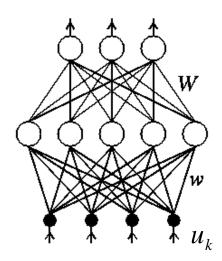
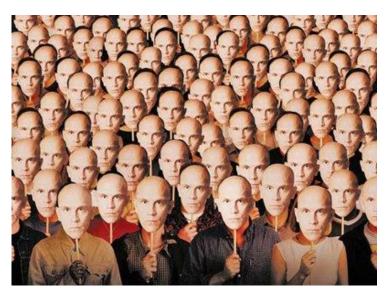
CSE 473

Lecture 28 (Chapter 18)

Neural Networks and Ensemble Learning





What if you want your neural network to predict *continuous* outputs rather than +1/-1 (i.e., perform regression)?

E.g., Teaching a network to drive

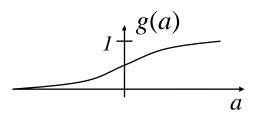
Image Source: Wikimedia Commons

Continuous Outputs with Sigmoid Networks

Output
$$v = g(\mathbf{w}^T \mathbf{u}) = g(\sum_i w_i u_i)$$

w
w
u = $(\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3)^T$
Input nodes

Sigmoid output function: $g(a) = \frac{1}{1 + e^{-\beta a}}$



Parameter β controls the slope

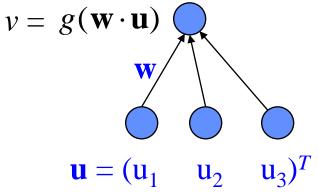
Learning the weights

Given: Training data (input **u**, desired output **d**) Problem: How do we learn the weights **w**?

Idea: Minimize squared error between network's output and desired output: $v = g(\mathbf{w} \cdot \mathbf{u})$

$$E(\mathbf{w}) = (d - v)^2$$

where $v = g(\mathbf{w} \cdot \mathbf{u})$



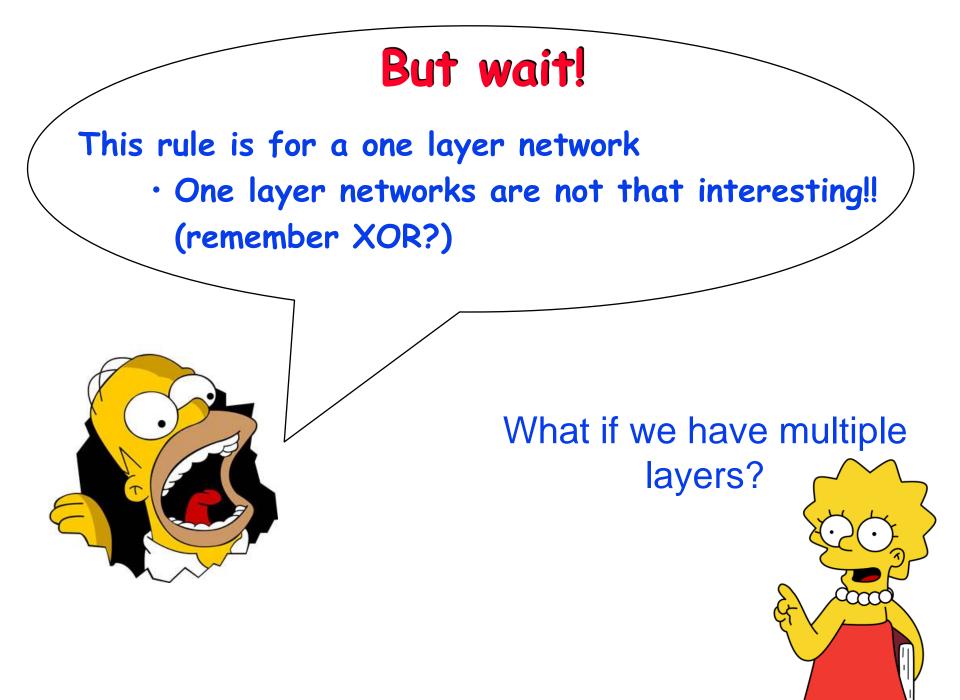
Starting from random values for w, want to change w so that E(w) is minimized – How?

Learning by Gradient-Descent (opposite of "Hill-Climbing")

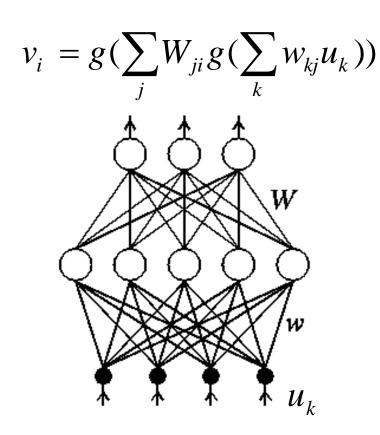
Change w so that E(w) is minimized

 Use Gradient Descent: Change w in proportion to -d*E*/dw (why?) $E(\mathbf{w}) = (d - v)^2$ $v = g(\mathbf{w} \cdot \mathbf{u})$ $\mathbf{w} \to \mathbf{w} - \varepsilon \frac{dE}{d\mathbf{w}}$ Derivative of sigmoid $\frac{dE}{d\mathbf{w}} = -2(d-v)\frac{dv}{d\mathbf{w}} = -2(d-v)g'(\mathbf{w}\cdot\mathbf{u})\mathbf{u}$ delta = error

Also known as the "delta rule" or "LMS (least mean square) rule"



Learning Multilayer Networks



Start with random weights W, w

Given input vector **u**, network produces output vector **v**

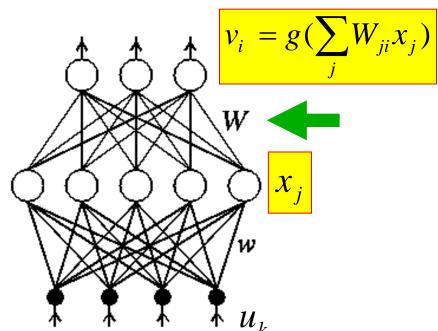
Use gradient descent to find W and w that minimize total error over all output units (labeled *i*):

$$E(\mathbf{W}, \mathbf{w}) = \frac{1}{2} \sum_{i} (d_i - v_i)^2$$

This leads to the famous "Backpropagation" learning rule

Backpropagation: Output Weights

$$E(\mathbf{W}, \mathbf{w}) = \frac{1}{2} \sum_{i} (d_i - v_i)^2$$



Learning rule for hidden-output weights W:

$$W_{ji} \to W_{ji} - \varepsilon \frac{dE}{dW_{ji}} \qquad \{\text{gradient descent}\}$$
$$\frac{dE}{dW_{ji}} = -(d_i - v_i)g'(\sum_j W_{ji}x_j)x_j \qquad \{\text{delta rule}\}$$

Backpropagation: Hidden Weights

$$E(\mathbf{W}, \mathbf{w}) = \frac{1}{2} \sum_{i} (d_{i} - v_{i})^{2}$$

$$W$$

$$x_{j} = g(\sum_{k} w_{kj} u_{k})$$

$$W$$

$$w$$

$$w$$

$$u_{k}$$

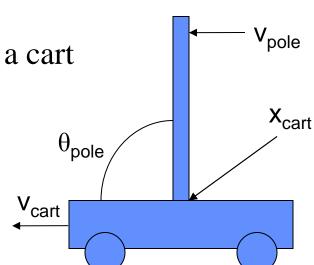
Learning rule for input-hidden weights w:

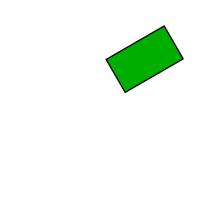
$$w_{kj} \rightarrow w_{kj} - \mathcal{E} \frac{dE}{dw_{kj}} \quad \text{But} : \frac{dE}{dw_{kj}} = \frac{dE}{dx_j} \cdot \frac{dx_j}{dw_{kj}} \text{ {chain rule}}$$
$$\frac{dE}{dw_{kj}} = \left[-\sum_i (d_i - v_i) g'(\sum_j W_{ji} x_j) W_{ji} \right] \cdot \left[g'(\sum_k w_{kj} u_k) u_k \right]$$

Examples: Pole Balancing and Backing up a Truck (courtesy of Keith Grochow)

- Neural network learns to balance a pole on a cart
 - Input: x_{cart} , v_{cart} , θ_{pole} , v_{pole}
 - Output: New force on cart

- Network learns to back a truck into a loading dock
 - Input: x, y, θ of truck
 - Output: Steering angle





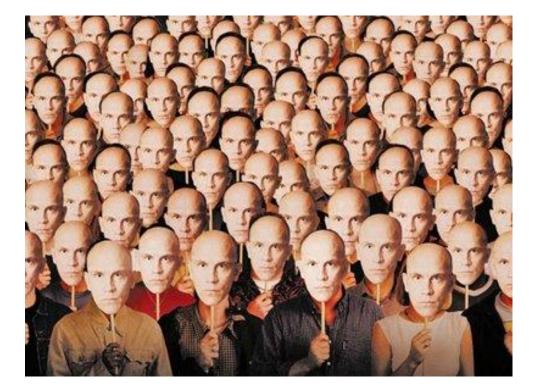
Ensemble Learning

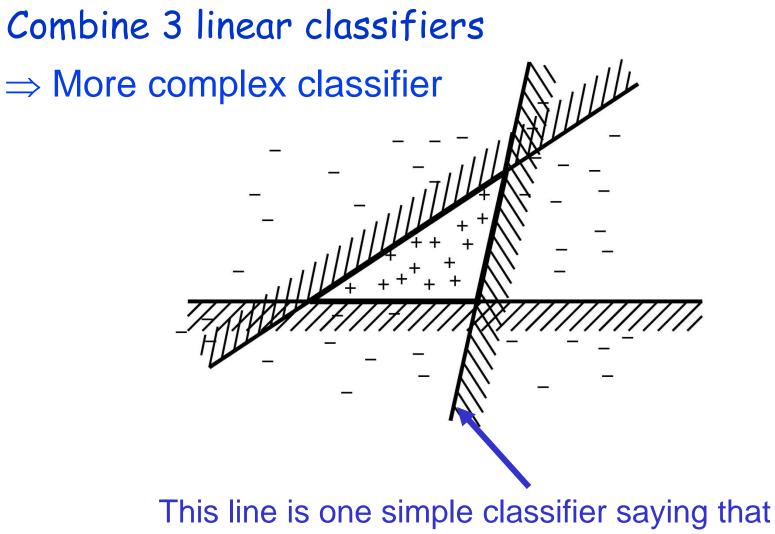
Sometimes each learning technique yields a different "hypothesis" (function)

But no perfect hypothesis...

Could we combine several imperfect hypotheses to get a better hypothesis?

Why Ensemble Learning? Wisdom of the Crowds...





everything to the left is + and everything to the right is -

Ensemble Learning: Motivation

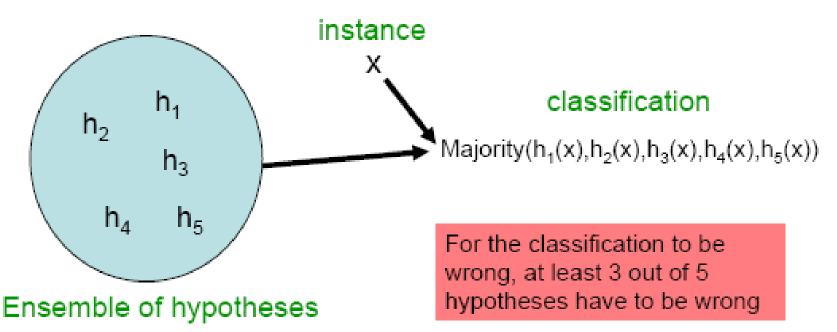
Analogies:

- Elections combine voters' choices to pick a good candidate (hopefully)
- Committees combine experts' opinions to make better decisions
- Students working together on a capstone project

Intuitions:

Individuals make mistakes but the "majority" may be less likely to

Individuals often have partial knowledge; a committee can pool expertise to make better decisions



Bagging: Details

- 1. Generate *m* new training datasets by sampling with replacement from the given dataset
- 2. Train *m* classifiers h_1, \ldots, h_m (e.g., decision trees), one from each newly generated dataset
- 3. Classify a new input by running it through the *m* classifiers and choosing the class that receives the most "votes"

Example: *Random forest* = Bagging with *m* decision tree classifiers, each tree constructed from random subset of attributes

Bagging: Analysis

- Assumptions:
 - Each h_i makes error with probability p
 - The hypotheses are independent
- Majority voting of n hypotheses:
 - k hypotheses make an error: $\binom{n}{k} p^{k}(1-p)^{n-k}$
 - Majority makes an error: $\Sigma_{k>n/2} \binom{n}{k} p^k (1-p)^{n-k}$
 - With n=5, p=0.1 → err(majority) < 0.01

Error probability went down from 0.1 to 0.01!

Weighted Majority Voting

In practice, hypotheses rarely independent

Some hypotheses have less errors than others \Rightarrow all votes are not equal!

Idea: Let's take a weighted majority

How do we compute the weights?

Next Time

- Weighted Majority Ensemble Classification
 - Boosting
- Survey of AI Applications
- · To Do:
 - · Project 4 due tonight!
 - Finish Chapter 18