CSE 473

Lecture 27 (Chapter 18)

Nearest Neighbors and Neural Networks

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore http://dnowicki123.tripod.com/sitebuildercontent/sitebuilderpictures/worm_cartoon.gif

Recall: Binary Classification

How do we classify the new red data points?

K-Nearest Neighbors

Idea:

- "Do as your neighbors do!"
- Classify a new data-point according to a majority vote of your k nearest neighbors

How do you measure "near"?

x discrete (e.g., strings): Hamming distance d(x₁,x₂) = # features on which x₁ and x₂ differ x continuous (e.g., images): Euclidean distance

 $d(x_1,x_2) = ||x_1-x_2|| = square root of sum of squared differences between corresponding elements of data vectors$

Example

Input Data: 2-D real-valued points (x_1, x_2)

Two classes: C_1 and C_2 . New Data Point +

K = 4: Look at 4 nearest neighbors. 3 are in C_1 , so classify + as C_1

K-NN produces a Nonlinear Decision Boundary

Some points near the boundary may be misclassified (but perhaps okay because of noise)

Recall: Face Detection Problem

How do we build a classifier to distinguish between faces and other objects?

The human brain is extremely good at classifying images

Can we develop classification methods by emulating the brain?

Neurons (Brain Cells)

Output spike roughly dependent on whether weighted sum of inputs reaches a threshold

The "Perceptron"

[Introduced by Rosenblatt (1958) building on McCulloch and Pitts (1943)]

Perceptrons are Classifiers!

A perceptron "neuron" defines a hyperplane $\sum_{i} w_{i}u_{j} - \mu = 0$

Perceptrons can compute functions

v = 1 iff $u_1 + u_2 - 1.5 > 0$ Similarly for OR and NOT

Perceptron Learning

How do we learn the weights and threshold?

Perceptron Learning Rule

Given input u, output $v = \Theta(\sum_{i} w_{i}u_{i} - \mu)$, and desired output v^{d} Adjust w_{i} and μ according to <u>output error ($v^{d} - v$)</u>:

$$w_i \leftarrow w_i + \varepsilon (v^d - v)u_i \qquad \text{For positive input } (u_i = +1):$$
Increases weight if error is positive
Decreases weight if error is negative
(opposite for $u_i = -1$)
 ε is a small positive "learning rate"

$$\mu \leftarrow \mu - \varepsilon(v^d - v)$$

Decreases threshold if error is positive Increases threshold if error is negative

Can Perceptrons learn any function?

Perceptrons can only classify linearly separable data How do we handle linear inseparability?

Multilayer Perceptrons

Can classify linearly inseparable data

Can solve XOR

An example of a two-layer perceptron that computes XOR

(Inputs and outputs are +1 or -1)

What if you want *continuous* outputs rather than +1/-1 outputs (i.e., regression)?

E.g., Teaching a network to drive

Image Source: Wikimedia Commons

Next Time

- Neural Networks for Regression
- Ensemble learning
- · To Do:
 - Project 4 due this Wednesday midnight!
 - Read Chapter 18