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Neural Networks 
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Recall: Binary Classification 

Class C1 

Class C2 

How do we classify the new red data points? 
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K-Nearest Neighbors  

Idea:  

• “Do as your neighbors do!” 

• Classify a new data-point according to a 
majority vote of your k nearest neighbors 

How do you measure “near”?  

x discrete (e.g., strings): Hamming distance 
 d(x1,x2) = # features on which x1 and x2 differ 

x continuous (e.g., images): Euclidean distance  

 d(x1,x2) = || x1-x2 || = square root of sum of squared 
differences between corresponding elements of data vectors 
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Example 
Input Data: 2-D real-valued points (x1,x2) 

Two classes: C1 and C2.     New Data Point + 

K = 4: Look at 4 nearest neighbors. 
3 are in C1, so classify + as C1 
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K-NN produces a Nonlinear Decision 
Boundary  

 Some points near 
the boundary 
may be 
misclassified 

   (but perhaps okay 
because of noise) 
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Recall: Face Detection Problem 

How do we build a classifier to distinguish 

between faces and other objects? 



The human brain is extremely 
good at classifying images 

Can we develop classification methods by 
emulating the brain? 
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Neurons (Brain Cells) 

 
Inputs 

Output spike 

(electrical pulse) 

Output spike roughly dependent on whether 
weighted sum of inputs reaches a threshold 

Synapse (a connection) 



The “Perceptron” 

Inputs ui 

(+1 or -1) 

Output v 

(+1 or -1) 

Weighted Sum > Threshold 

(x) = +1 if x > 0 and -1 if x  0 
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[Introduced by Rosenblatt (1958) building on McCulloch and Pitts (1943)] 
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Perceptrons are Classifiers! 

A perceptron “neuron” defines a hyperplane 
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Spike = +1 output (class C1) 

No spike = -1 output (class C2) 
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Perceptrons can compute functions 

Example: AND function 
 

A separating hyperplane 

v 

u1 u2 

 = 1.5 
(1,1) 
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-1 
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u2 -1 -1 -1 

1 -1 -1 

-1 1 -1 

1 1 1 

u1 u2 AND 

v = 1 iff u1 + u2 – 1.5 > 0 

Similarly for OR and NOT 
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Perceptron Learning 
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Spike = +1 output (class C1) 

No spike = -1 output (class C2) 
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How do we learn the weights and threshold? 



Perceptron Learning Rule 

Given input u, output                         , and desired output vd 

Adjust wi and  according to output error (vd – v):  
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 For positive input (ui = +1): 

Increases weight if error is positive 

Decreases weight if error is negative  

(opposite for ui = -1) 

 is a small positive “learning rate” 

 

Decreases threshold if error is positive 

Increases threshold if error is negative  
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Can Perceptrons learn any function? 

1 

-1 
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-1 
u1 

u2 
-1 -1 -1 

1 -1 +1 

-1 1 +1 

1 1 -1 

u1 u2 XOR 

Perceptrons can only classify linearly 
separable data 

How do we handle linear inseparability? 

?  +1 output 

  -1 output 



Multilayer Perceptrons 

Can classify linearly inseparable data 

• Can solve XOR 

An example of a two-layer perceptron that computes XOR 
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(Inputs and outputs are +1 or -1) 
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What if you want continuous 
outputs rather than +1/-1 
outputs (i.e., regression)? 

E.g., Teaching a network to drive 

Image Source: Wikimedia Commons 
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Next Time 

• Neural Networks for Regression 

• Ensemble learning 

• To Do:  

• Project 4 due this Wednesday midnight! 

• Read Chapter 18 


