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Motivation: Face Detection 
 

How do we build a classifier to distinguish 

between faces and other objects? 



Binary Classification: Example 

Faces (class C1) 

Non-faces (class C2) 

How do we classify new data points? 

Feature 1 
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Binary Classification:  
Linear Classifiers 

Find a line (in general, a 

hyperplane) separating 

the two sets of data 

points: 

g(x) = wx + b = 0, i.e., 

w1x1 +  w2x2 + b = 0 

For any new point x, choose: 

  class C1 if g(x) > 0 and class C2 otherwise 

x1 

x2 

g(x) = 0 

g(x) < 0 

g(x) > 0 

C1 
C2 
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Classification Problem 

   denotes yi  = +1 

(output class 1)  

   denotes yi  = -1 

(output class 2)  

Class 2 

Given: Training data (xi, yi) 

Goal: Choose wi and b based on training data  
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Class 1 
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Separating Hyperplanes 

Different choices of  wi  and b give different hyperplanes 

(This and next few slides adapted from Andrew Moore’s) 

   denotes +1 output  

   denotes -1 output 

Class 1 

Class 2 

http://www.cs.cmu.edu/~awm/tutorials
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Which hyperplane is best? 

   denotes +1 output  

   denotes -1 output 

Class 1 

Class 2 
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How about the one right in the middle? 

Intuitively, this boundary 

seems good  
 

Avoids misclassification of 

new test points if they are 

generated from the same 

distribution as training points 
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Margin 

Define the margin 
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint. 
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Maximum Margin and Support Vector Machine 

The maximum 
margin classifier is 
called a Support 
Vector Machine (in 
this case, a Linear 
SVM or LSVM) 

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against 
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Why Maximum Margin? 

• Robust to small 
perturbations of data 
points near boundary 

• There exists theory 
showing this is best for 
generalization to new 
points  

• Empirically works great 
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Finding the Maximum Margin  
(For Math Lovers Eyes Only) 

Can show that we need to maximize: 

 

 

Constrained optimization problem that leads to: 

 
 

where the ai are obtained by maximizing: 
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Quadratic programming (QP) problem 
 - A global maximum can always be found 

Margin 

(Interested in more details? see Burges’ SVM tutorial online) 

Depends on 

dot product 

of inputs 

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf
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What if data is not linearly separable? 

Outliers (due to noise) 
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Soft Margin SVMs 

Allow errors  ξ i (deviations from 
margin) 

 

Trade off margin with errors 

Minimize: 

ξ 
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Another Example 

Not linearly separable 

What if you want to still use the 
linear classification idea? 
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Idea:   Map original input space to higher-
dimensional “feature” space; use linear classifier 
in higher-dim. space 

x → φ(x) 

Handling non-linearly separable data 

x1 

x2 
z3 

z2 

z1 
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x → φ(x) 

Problem: High dimensional spaces 

Computation in high-dimensional feature space is costly 

The high dimensional projection function φ(x) may be too 
complicated to compute  

Kernel trick to the rescue! 











i

iii

ji

jijiji

i

i

y

yy

0 and 0 subject to

)(
2

1

,

aa

aaa xx

18 

The Kernel Trick 

Recall: SVM maximizes the quadratic function: 

 

 

 

Insight:  

The data points only appear as dot product 
• No need to compute high-dimensional φ(x) explicitly!  

Just replace dot product xixj with a “kernel” 
function K(xi,xj) which represents φ(xi)  φ(xj) 

• E.g., Gaussian kernel  

  K(xi,xj) =  exp(-||xi-xj||2/22) 

• E.g., Polynomial kernel  

  K(xi,xj) = xixj+1)d 
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Example of the Kernel Trick 

Suppose f(.) is given as follows (2D to 5D): 

 

 

Dot product in the feature space is 

 

 

So, if we define the kernel function as follows, 
there is no need to compute f(.) explicitly 

 

 

Use of kernel function to avoid computing f(.) 
explicitly is known as the kernel trick 
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Face Detection using 
SVMs 

Kernel used: Polynomial of degree 2 

(Osuna, Freund, Girosi, 1998) 

http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
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Support Vectors for Face/Non-Face Data 
 

Support Vectors 
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Next Time 

Nearest Neighbor Classification 

Neural Networks 

Regression (Learning functions with continuous outputs) 

 

To Do:  

• Project 4 

• Read Chapter 18 


