
CSE 473

Lecture 26
(Chapter 18)

Linear Classification and

Support Vector Machines

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

2

Motivation: Face Detection

How do we build a classifier to distinguish

between faces and other objects?

Binary Classification: Example

Faces (class C1)

Non-faces (class C2)

How do we classify new data points?

Feature 1

F
e

a
tu

re
 2

Binary Classification:
Linear Classifiers

Find a line (in general, a

hyperplane) separating

the two sets of data

points:

g(x) = wx + b = 0, i.e.,

w1x1 + w2x2 + b = 0

For any new point x, choose:

 class C1 if g(x) > 0 and class C2 otherwise

x1

x2

g(x) = 0

g(x) < 0

g(x) > 0

C1
C2

5

Classification Problem

 denotes yi = +1

(output class 1)

 denotes yi = -1

(output class 2)

Class 2

Given: Training data (xi, yi)

Goal: Choose wi and b based on training data

0 bxw i

i

i

Class 1

6

Separating Hyperplanes

Different choices of wi and b give different hyperplanes

(This and next few slides adapted from Andrew Moore’s)

 denotes +1 output

 denotes -1 output

Class 1

Class 2

http://www.cs.cmu.edu/~awm/tutorials

7

Which hyperplane is best?

 denotes +1 output

 denotes -1 output

Class 1

Class 2

8

How about the one right in the middle?

Intuitively, this boundary

seems good

Avoids misclassification of

new test points if they are

generated from the same

distribution as training points

9

Margin

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

10

Maximum Margin and Support Vector Machine

The maximum
margin classifier is
called a Support
Vector Machine (in
this case, a Linear
SVM or LSVM)

Support Vectors
are those
datapoints that
the margin
pushes up
against

11

Why Maximum Margin?

• Robust to small
perturbations of data
points near boundary

• There exists theory
showing this is best for
generalization to new
points

• Empirically works great

12

Finding the Maximum Margin
(For Math Lovers Eyes Only)

Can show that we need to maximize:

Constrained optimization problem that leads to:

where the ai are obtained by maximizing:

 iby ii ,1 subject to 2/ xww

i

iii y xw a

i

iii

ji

jijiji

i

i

y

yy

0 and 0 subject to

)(
2

1

,

aa

aaa xx

Quadratic programming (QP) problem
 - A global maximum can always be found

Margin

(Interested in more details? see Burges’ SVM tutorial online)

Depends on

dot product

of inputs

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf

13

What if data is not linearly separable?

Outliers (due to noise)

14

Soft Margin SVMs

Allow errors ξ i (deviations from
margin)

Trade off margin with errors

Minimize:

ξ

 iby

C

iiii

i

i

,0 and 1

 :subject to
2

1 2

xw

w

15

Another Example

Not linearly separable

What if you want to still use the
linear classification idea?

16

Idea: Map original input space to higher-
dimensional “feature” space; use linear classifier
in higher-dim. space

x → φ(x)

Handling non-linearly separable data

x1

x2
z3

z2

z1

17

x → φ(x)

Problem: High dimensional spaces

Computation in high-dimensional feature space is costly

The high dimensional projection function φ(x) may be too
complicated to compute

Kernel trick to the rescue!

i

iii

ji

jijiji

i

i

y

yy

0 and 0 subject to

)(
2

1

,

aa

aaa xx

18

The Kernel Trick

Recall: SVM maximizes the quadratic function:

Insight:

The data points only appear as dot product
• No need to compute high-dimensional φ(x) explicitly!

Just replace dot product xixj with a “kernel”
function K(xi,xj) which represents φ(xi) φ(xj)

• E.g., Gaussian kernel

 K(xi,xj) = exp(-||xi-xj||2/22)

• E.g., Polynomial kernel

 K(xi,xj) = xixj+1)d

19

Example of the Kernel Trick

Suppose f(.) is given as follows (2D to 5D):

Dot product in the feature space is

So, if we define the kernel function as follows,
there is no need to compute f(.) explicitly

Use of kernel function to avoid computing f(.)
explicitly is known as the kernel trick

20

Face Detection using
SVMs

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)

http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz

21

Support Vectors for Face/Non-Face Data

Support Vectors

22

Next Time

Nearest Neighbor Classification

Neural Networks

Regression (Learning functions with continuous outputs)

To Do:

• Project 4

• Read Chapter 18

