

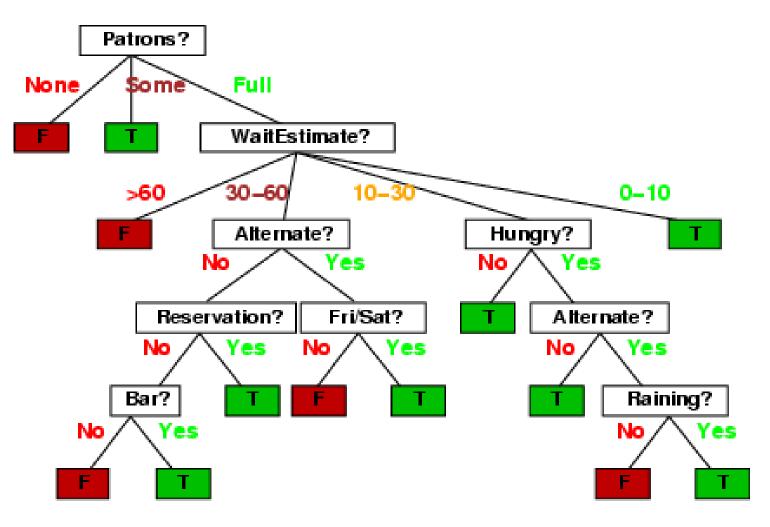
Lecture 25 (Chapter 18)

Learning Decision Trees

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

A "personal" decision tree for deciding whether to wait at a restaurant

• A decision tree for *Wait?* based on personal "rules of thumb":



Input Data for Learning

Past examples when I did/did not wait for a table:

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Decision Tree Learning

- Aim: Find a small tree *consistent* with training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
```

```
if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else
```

```
best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)
```

```
tree \leftarrow a new decision tree with root test best
```

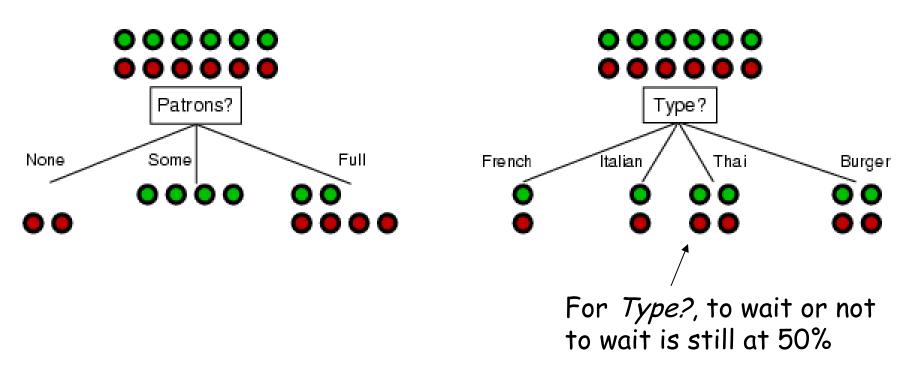
for each value v_i of $best \operatorname{do}$

```
examples_i \leftarrow \{ elements of examples with best = v_i \}
```

 $subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))$

add a branch to *tree* with label v_i and subtree subtree return *tree*

Choosing an attribute to split on

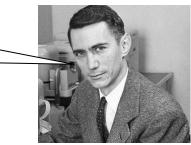


- Idea: a good attribute should reduce uncertainty
 - E.g., splits the examples into subsets that are (ideally) "all positive" (T) or "all negative" (F)
- Patrons? is a better choice

Reduce uncertainty? How do you quantify uncertainty?

http://a.espncdn.com/media/ten/2006/0306/photo/g_mcenroe_195.jpg

Use information theory!



Entropy measures the amount of uncertainty in a probability distribution

- Entropy (or information content in bits) of an answer to a question with *n* possible answers v₁, ..., v_n:
 - $I(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$

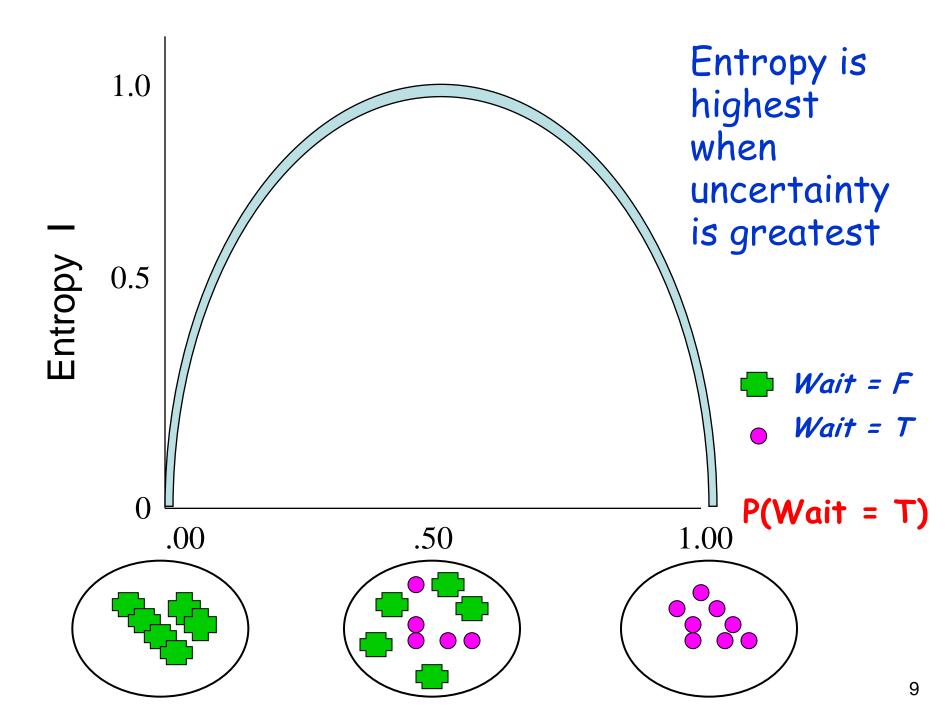
Using information theory

- Suppose we have p examples with Wait = True (positive) and n examples with Wait = False (negative).
- Our best estimate of the probabilities of Wait = true or false is given by:

 $P(true) \approx p / p + n$ $p(false) \approx n / p + n$

Hence the entropy (in bits) is given by:

$$I(\frac{p}{p+n},\frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$



Choosing an attribute to split on

- Idea: a good attribute should reduce uncertainty and result in "gain in information"
- How much information do we gain if we disclose the value of some attribute?

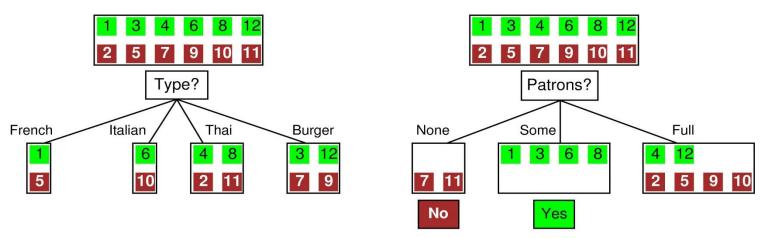
Answer:

uncertainty before – uncertainty after

Back at the Restaurant

Before choosing an attribute: 6 True and 6 False Entropy = $-6/12 \log(6/12) - 6/12 \log(6/12)$ = $-\log(1/2) = \log(2) = 1$ bit There is "1 bit of information to be discovered"

Choosing an Attribute

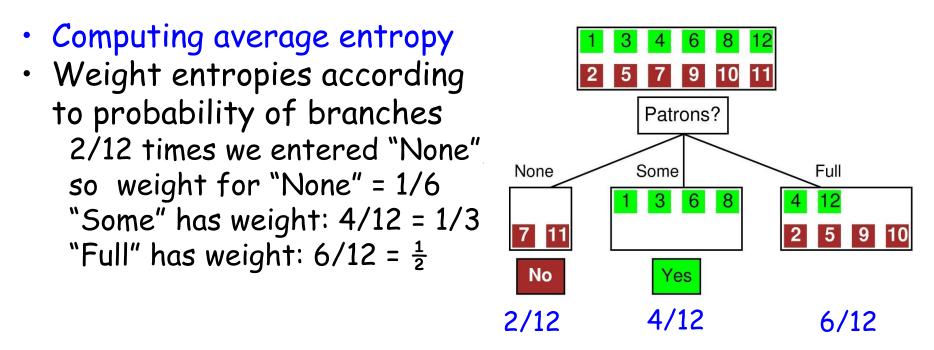


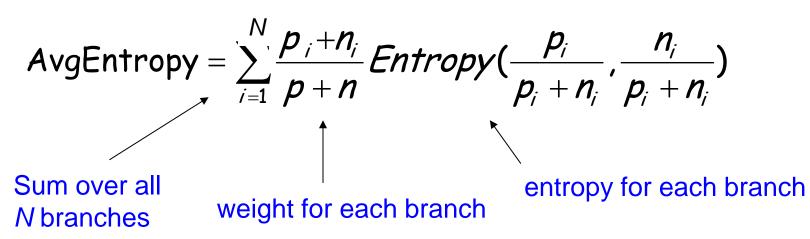
If we choose Type: Along "French": entropy = 1 bit. Information gain = 1-1 = 0. (same for other branches)

If we choose Patrons: In branches "None" and "Some", entropy = 0 For "Full", entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92

So info gain = (1-0) or (1-0.92) bits > 0 in all cases Choosing Patrons gains more information!

Combining entropy across branches





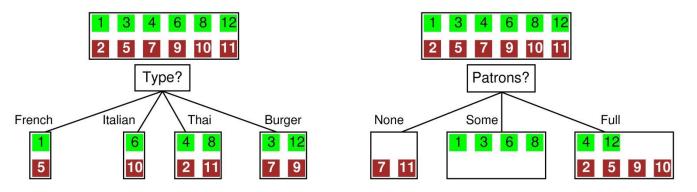
Information gain

Information Gain (IG) (= reduction in entropy) when choosing attribute A:

IG(A) = Entropy before choosing - AvgEntropy after choosing A

 When constructing each level of decision tree, choose attribute with largest IG

Information gain in our example

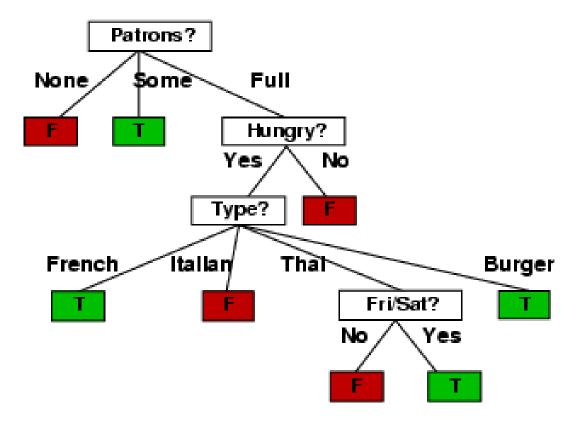


$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$
$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0, 1) + \frac{4}{12}I(1, 0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = .541 \text{ bits}$$

Patrons has highest IG of all attributes \Rightarrow DTL algorithm chooses Patrons as the root

Learned Decision Tree for "Wait?"

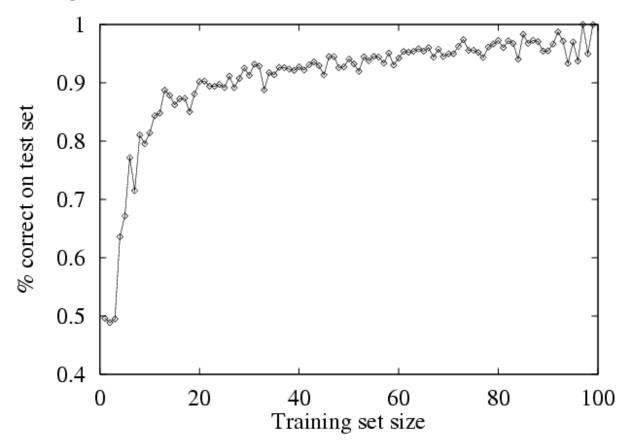
Decision tree learned from the 12 examples:



- Substantially simpler than "rules-of-thumb" tree
 - more complex hypothesis not justified by small amount of data

Performance Evaluation

- How do we know that the learned tree $h \approx true f$?
- Answer: Try *h* on a new test set of examples
- Learning curve = % correct on test set as a function of training set size



Generalization

- How do we know the classifier function we have learned is good?
 - Look at generalization error on test data
 - Method 1: Split data into separate training and test sets (the "hold out" method)
 - What if the split you chose was bad?
 - Method 2: Cross-Validation

Cross-validation

- K-fold cross-validation:
 - Divide data into K subsets of equal size
 - Train learning algorithm K times, each time leaving out one of the subsets, and compute error on left-out subset
 - Report average error over all subsets
- Leave-1-out cross-validation:
 - Train on all but 1 data point, test on that data point; repeat for each point
 - Report average error over all points

Next Time

- Other classification methods
 - Linear Classification
 - Support Vector Machines
- To Do:
 - Project 4
 - Read Chapter 18