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Pac-Man goes Ghost Hunting 
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Example of Ghost Tracking (movie) 
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Bayesian Network for Tracking 
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This “Dynamic” Bayesian network is also called a 

Hidden Markov Model (HMM) 
• Dynamic = time-dependent 

• Hidden = state (ghost position) is hidden 

• Markov = current state only depends on previous state 

      Similar to MDP (Markov decision process) but no actions 

 



Hidden Markov Model (HMM) 

5 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 

XN 

EN 

Hidden State at 

time t = 1, 2,…,N 

Emissions 

(measurements) at 

time t = 1, 2,…,N 

HMM is defined by 2 conditional probabilities: 
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Project 4: Ghostbusters 

 Plot: Pacman's grandfather, Grandpac, 

learned to hunt ghosts for sport   

 Was blinded by his power, but can hear the 

ghosts’ banging and clanging sounds. 
 

 Transition Model: Ghosts move 

randomly, but are sometimes biased 
 

 Emission Model: Pacman gets a 

“noisy” distance to each ghost 



Ghostbusters HMM 

 P(X1) = uniform 

 

 P(X’|X) = ghost usually moves clockwise, 

but sometimes moves in a random direction 

or stays in place 

 

 

 

 P(E|X) = compute Manhattan distance to 

ghost from Pac-Man and emit a noisy 

distance given this true distance (see 

example for true distance = 8) 
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HMM Inference Problem 

 Given evidence E1,…, Et = E1:t =e1:t 

 Inference problem (aka Filtering or Tracking): 

Find posterior P(Xt|e1:t) for current t 
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The “Forward” Algorithm for Filtering 

 Want to compute the “belief” 

 Derive belief update rule from probability definitions, Bayes’ 

rule and Markov assumption:  
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“Forward” Algorithm: Summary 
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At each time step t, compute and maintain a table of 

P values over all possible values of X 



Filtering using the Forward Algorithm 
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Particle Filtering 

 Sometimes |X| is too big for exact inference 

 |X| may be too big to even store 

    E.g. when X is continuous 
 

 Solution: Approximate inference 

 Track a set of samples of X 

 Samples are called particles 

 Number of samples for X=x is  

    proportional to probability of x 
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Representation: Particles 

 Our representation of P(X) is 

now a list of N particles 

(samples) 

 Generally, N << |X| 

 P(x) approximated by number of 

particles with value x 

 Note: Many x will have P(x) = 0!  

 More particles, more accuracy 

Particles: 
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Particle Filtering 

Step 1: Elapse Time 

 Each particle x is moved by 
sampling its next position using 
the transition model 

 

 

 Samples’ frequencies reflect the 
transition probabilities 

 In example, most samples move 
clockwise, but some move in 
another direction or stay in place 

 

 This step captures passage of time 



Particle Filtering 

Step 2: Observe 

   Weight particles according to evidence 

 Assign weights w to samples based 
on the new observed evidence e 

 

 

 In example, true ghost position is shown 
in red outline; samples closer to ghost 
get higher weight (bigger size of circles) 
based on noisy distance emission 
model 



Particle Filtering 

Step 3: Resample 

 N times, we choose 
from our weighted 
sample distribution 
(i.e. randomly select 
with replacement) 

 Each sample selected 
with probability 
proportional to its 
weight 

 

 Now the update is 
complete for this 
time step, continue 
with the next one 
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Next Time 

 More on Particle Filtering 

 Supervised Learning 

 Learning Decision Trees from data 

 To Do:  

 Project 4 

 Read Chapter 18 


