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Pac-Man goes Ghost Hunting 
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Example of Ghost Tracking (movie) 
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Bayesian Network for Tracking 
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This “Dynamic” Bayesian network is also called a 

Hidden Markov Model (HMM) 
• Dynamic = time-dependent 

• Hidden = state (ghost position) is hidden 

• Markov = current state only depends on previous state 

      Similar to MDP (Markov decision process) but no actions 

 



Hidden Markov Model (HMM) 
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HMM is defined by 2 conditional probabilities: 
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Project 4: Ghostbusters 

 Plot: Pacman's grandfather, Grandpac, 

learned to hunt ghosts for sport   

 Was blinded by his power, but can hear the 

ghosts’ banging and clanging sounds. 
 

 Transition Model: Ghosts move 

randomly, but are sometimes biased 
 

 Emission Model: Pacman gets a 

“noisy” distance to each ghost 



Ghostbusters HMM 

 P(X1) = uniform 

 

 P(X’|X) = ghost usually moves clockwise, 

but sometimes moves in a random direction 

or stays in place 

 

 

 

 P(E|X) = compute Manhattan distance to 

ghost from Pac-Man and emit a noisy 

distance given this true distance (see 

example for true distance = 8) 
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HMM Inference Problem 

 Given evidence E1,…, Et = E1:t =e1:t 

 Inference problem (aka Filtering or Tracking): 

Find posterior P(Xt|e1:t) for current t 
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The “Forward” Algorithm for Filtering 

 Want to compute the “belief” 

 Derive belief update rule from probability definitions, Bayes’ 

rule and Markov assumption:  
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“Forward” Algorithm: Summary 
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At each time step t, compute and maintain a table of 

P values over all possible values of X 



Filtering using the Forward Algorithm 
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Particle Filtering 

 Sometimes |X| is too big for exact inference 

 |X| may be too big to even store 

    E.g. when X is continuous 
 

 Solution: Approximate inference 

 Track a set of samples of X 

 Samples are called particles 

 Number of samples for X=x is  

    proportional to probability of x 
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Representation: Particles 

 Our representation of P(X) is 

now a list of N particles 

(samples) 

 Generally, N << |X| 

 P(x) approximated by number of 

particles with value x 

 Note: Many x will have P(x) = 0!  

 More particles, more accuracy 
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Particle Filtering 

Step 1: Elapse Time 

 Each particle x is moved by 
sampling its next position using 
the transition model 

 

 

 Samples’ frequencies reflect the 
transition probabilities 

 In example, most samples move 
clockwise, but some move in 
another direction or stay in place 

 

 This step captures passage of time 



Particle Filtering 

Step 2: Observe 

   Weight particles according to evidence 

 Assign weights w to samples based 
on the new observed evidence e 

 

 

 In example, true ghost position is shown 
in red outline; samples closer to ghost 
get higher weight (bigger size of circles) 
based on noisy distance emission 
model 



Particle Filtering 

Step 3: Resample 

 N times, we choose 
from our weighted 
sample distribution 
(i.e. randomly select 
with replacement) 

 Each sample selected 
with probability 
proportional to its 
weight 

 

 Now the update is 
complete for this 
time step, continue 
with the next one 
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Next Time 

 More on Particle Filtering 

 Supervised Learning 

 Learning Decision Trees from data 

 To Do:  

 Project 4 

 Read Chapter 18 


