CSE 473

Lecture 23 (Chapters 15 & 18)

Hidden Markov Models (HMMs) and Particle Filters

Pac-Man goes Ghost Hunting

Pac-Man does not know true position of moving ghost

Must infer probability distribution over true ghost position

Example of Ghost Tracking (movie)

Bayesian Network for Tracking

This "Dynamic" Bayesian network is also called a Hidden Markov Model (HMM)

- Dynamic = time-dependent
- Hidden = state (ghost position) is hidden
- Markov = current state only depends on previous state Similar to MDP (Markov decision process) but no actions

Hidden Markov Model (HMM)

HMM is defined by 2 conditional probabilities:

$$\begin{split} P(X_t \mid X_{t-1}) & \text{Transition model} &= P(X' \mid X) \\ P(E_t \mid X_t) & \text{Emission model} &= P(E \mid X) \\ & \text{(aka measurement/observation model)} \\ \text{plus initial state distribution } P(X_1) \end{split}$$

Project 4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport
 - Was blinded by his power, but can hear the ghosts' banging and clanging sounds.
- Transition Model: Ghosts move randomly, but are sometimes biased
- Emission Model: Pacman gets a "noisy" distance to each ghost

Ghostbusters HMM

1

HMM Inference Problem

- Given evidence $E_1, \ldots, E_t = E_{1:t} = e_{1:t}$
- Inference problem (aka *Filtering* or *Tracking*): Find posterior $P(X_t|e_{1:t})$ for current t

The "Forward" Algorithm for Filtering

- Want to compute the "belief" $B_t(X) = P(X_t | e_{1:t})$
- Derive belief update rule from probability definitions, Bayes' rule and Markov assumption:

$$P(X_{t} | e_{1:t}) = \alpha P(e_{t} | X_{t}, e_{1:t-1}) P(X_{t} | e_{1:t-1})$$
Bayes

$$= \alpha P(e_{t} | X_{t}) \sum_{X_{t-1}} P(X_{t}, X_{t-1} | e_{1:t-1})$$
Marginalize

$$= \alpha P(e_{t} | X_{t}) \sum_{X_{t-1}} P(X_{t} | X_{t-1}, e_{1:t-1}) P(X_{t-1} | e_{1:t-1})$$
Markov

$$= \alpha P(e_{t} | X_{t}) \sum_{X_{t-1}} P(X_{t} | X_{t-1}) P(X_{t-1} | e_{1:t-1})$$
Markov
New estimate

estimate

"Forward" Algorithm: Summary

$$P(X_{t} | e_{1},...,e_{t}) = \alpha P(e_{t} | X_{t}) \sum_{X_{t-1}} P(X_{t} | X_{t-1}) P(X_{t-1} | e_{1},...,e_{t-1})$$

$$Normali- Emission model model estimate$$

$$Constant$$

$$New$$

$$estimate$$

At each time step *t*, compute and maintain a table of *P* values over all possible values of *X*

Filtering using the Forward Algorithm

 $P(X_t | e_1,...,e_t)$ is an array of $12 \times 18 = 216$ values (one for each location)

Particle Filtering

- Sometimes |X| is too big for exact inference
 - |X| may be too big to even store $P(X_t | e_{1:t})$ E.g. when X is continuous
- Solution: Approximate inference
 - Track a set of samples of X
 - Samples are called *particles*
 - Number of samples for X=x is proportional to probability of x

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
- P(x) approximated by <u>number of</u> <u>particles</u> with value x
 - Note: Many x will have P(x) = 0!
 - More particles, more accuracy

Particles:

(1,2)	(3,3)
(2,3)	(3,3)
(2,3)	(3,3)
(3,2)	(3,3)

(3,2) (3,3)

Particle Filtering Step 1: Elapse Time

 Each particle x is moved by sampling its next position using the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- Samples' frequencies reflect the transition probabilities
- In example, most samples move clockwise, but some move in another direction or stay in place
- This step captures passage of time

Particle Filtering Step 2: Observe

Weight particles according to evidence

 Assign weights w to samples based on the new observed evidence e

w(x) = P(e|x)

 In example, true ghost position is shown in red outline; samples closer to ghost get higher weight (bigger size of circles) based on noisy distance emission model

Particle Filtering Step 3: Resample

- N times, we choose from our weighted sample distribution (i.e. randomly select with replacement)
 - Each sample selected with probability proportional to its weight
- Now the update is complete for this time step, continue with the next one

Old Particles: (1,3) w=0.1 (3,2) w=0.9 (3,2) w=0.9 (3,1) w=0.4 (2,3) w=0.3 (2,2) w=0.4 (3,3) w=0.4 (3,3) w=0.4 (3,2) w=0.9 (2,3) w=0.3

New Particles:

- (3,2) w=1 (3,2) w=1
- (3,2) w=1
- (2,3) w=1
- (2,0) w=1 (2,2) w=1
- (2,2) = 1(3,2) w=1
- (3,2) w=1 (3,1) w=1
- (3,1) W=1(3,3) W=1
- (3,3) W=1
- (3,2) w=1
- (3,1) w=1

Next Time

- More on Particle Filtering
- Supervised Learning
- Learning Decision Trees from data
- To Do:
 - Project 4
 - Read Chapter 18