CSE 473

Lecture 23

(Chapters 15 \& 18)

Hidden Markov Models (HMMs) and Particle Filters

Pac-Man goes Ghost Hunting

Pac-Man does not know true position of moving ghost

Noisy distance prob (if true distance =8)

Must infer probability distribution over true ghost position

Example of Ghost Tracking (movie)

Bayesian Network for Tracking

True ghost positions at time $1,2, \ldots, \mathrm{~N}$

Noisy distance measurements at time $1,2, \ldots, \mathrm{~N}$

This "Dynamic" Bayesian network is also called a Hidden Markov Model (HMM)

- Dynamic = time-dependent
- Hidden = state (ghost position) is hidden
- Markov = current state only depends on previous state Similar to MDP (Markov decision process) but no actions

Hidden Markov Model (HMM)

Hidden State at time $t=1,2, \ldots, N$

Emissions (measurements) at time $t=1,2, \ldots, N$

HMM is defined by 2 conditional probabilities:
$P\left(X_{t} \mid X_{t-1}\right)$ Transition model $=P\left(X^{\prime} \mid X\right)$
$P\left(E_{t} \mid X_{t}\right) \quad$ Emission model $=P(E \mid X)$
(aka measurement/observation model)
plus initial state distribution $P\left(X_{1}\right)$

Project 4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport
- Was blinded by his power, but can hear the ghosts' banging and clanging sounds.
- Transition Model: Ghosts move randomly, but are sometimes biased

- Emission Model: Pacman gets a "noisy" distance to each ghost

Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform

$P\left(X_{1}\right)$	$1 / 9$	$1 / 9$	$1 / 9$

- $\mathrm{P}\left(\mathrm{X}^{\prime} \mid \mathrm{X}\right)=$ ghost usually moves clockwise, but sometimes moves in a random direction or stays in place

	$1 / 6$	$1 / 6$	$1 / 2$
	$\left.X^{\prime} \mid X=<1,2>\right)$	0	$1 / 6$

- $\mathrm{P}(\mathrm{E} \mid \mathrm{X})=$ compute Manhattan distance to ghost from Pac-Man and emit a noisy distance given this true distance (see example for true distance $=8$)

$$
\begin{array}{l|l|l}
\hline 1 / 9 & 1 / 9 & 1 / 9 \\
\hline 1 / 9 & 1 / 9 & 1 / 9 \\
\hline
\end{array}
$$

HMM Inference Problem

- Given evidence $E_{1}, \ldots, E_{t}=E_{1: t}=e_{1: t}$
- Inference problem (aka Filtering or Tracking):

Find posterior $P\left(X_{t} \mid e_{1: t}\right)$ for current t

The "Forward" Algorithm for Filtering

- Want to compute the "belief" $B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)$
- Derive belief update rule from probability definitions, Bayes' rule and Markov assumption:

$$
P\left(X_{t} \mid e_{1: t}\right)=\alpha P\left(e_{t} \mid X_{t}, e_{1: t-1}\right) P\left(X_{t} \mid e_{1: t-1}\right)
$$

Bayes

$$
\begin{aligned}
& =\alpha P\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} P\left(X_{t}, X_{t-1} \mid e_{1: t-1}\right) \\
& =\alpha P\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} P\left(X_{t} \mid X_{t-1}, e_{1: t-1}\right) P\left(X_{t-1} \mid e_{1: t-1}\right)
\end{aligned}
$$

Marginalize

$$
=\alpha P\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} P\left(X_{t} \mid X_{t-1}\right) P\left(X_{t-1} \mid e_{1: t-1}\right)
$$

New
Previous
estimate

"Forward" Algorithm: Summary

$P\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)=\alpha P\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} P\left(X_{t} \mid X_{t-1}\right) P\left(X_{t-1} \mid e_{1}, \ldots, e_{t-1}\right)$
At each time step t, compute and maintain a table of P values over all possible values of X

Filtering using the Forward Algorithm

$P\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ is an array of $12 \times 18=216$ values (one for each location)

Particle Filtering

- Sometimes $|\mathrm{X}|$ is too big for exact inference
- |X| may be too big to even store $P\left(X_{t} \mid e_{1: t}\right)$ E.g. when X is continuous
- Solution: Approximate inference
- Track a set of samples of X
- Samples are called particles
- Number of samples for $X=x$ is proportional to probability of x

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $N \ll|X|$
- $\mathrm{P}(\mathrm{x})$ approximated by number of particles with value x
- Note: Many x will have $\mathrm{P}(\mathrm{x})=0$!
- More particles, more accuracy

Particles:
$(1,2) \quad(3,3)$
$(2,3) \quad(3,3)$
$(2,3) \quad(3,3)$
$(3,2)$
$(3,2) \quad(3,3)$
$(3,3)$

Particle Filtering Step 1: Elapse Time

- Each particle x is moved by sampling its next position using the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- Samples' frequencies reflect the transition probabilities
- In example, most samples move clockwise, but some move in another direction or stay in place
- This step captures passage of time

Particle Filtering Step 2: Observe

Weight particles according to evidence

- Assign weights w to samples based on the new observed evidence e

$$
w(x)=P(e \mid x)
$$

- In example, true ghost position is shown in red outline; samples closer to ghost get higher weight (bigger size of circles) based on noisy distance emission model

Particle Filtering Step 3: Resample

- N times, we choose from our weighted sample distribution (i.e. randomly select with replacement)
- Each sample selected with probability proportional to its weight
- Now the update is complete for this time step, continue with the next one

Old Particles:

$$
(1,3) w=0.1
$$

$$
(3,2) w=0.9
$$

$$
(3,2) w=0.9
$$

$$
(3,1) w=0.4
$$

$$
(2,3) w=0.3
$$

$$
(2,2) w=0.4
$$

$$
(3,3) w=0.4
$$

$$
(3,3) w=0.4
$$

$$
(3,2) w=0.9
$$

$(2,3) w=0.3$

New Particles:

$$
(3,2) w=1
$$

$$
(3,2) w=1
$$

$$
(3,2) w=1
$$

$(2,3) w=1$
$(2,2) w=1$
$(3,2) \mathrm{w}=1$
$(3,1) \mathrm{w}=1$
$(3,3) w=1$
$(3,2) w=1$
$(3,1) \mathrm{w}=1$

Next Time

- More on Particle Filtering
- Supervised Learning
- Learning Decision Trees from data
- To Do:
- Project 4
- Read Chapter 18

