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Example: Burglars and Earthquakes 

 You are at a “Done with the AI class” party. 

 Neighbor John calls to say your home alarm has gone off 

(but neighbor Mary doesn't).  

 Sometimes your alarm is set off by minor earthquakes. 

 Question: Is your home being burglarized? 



Recall: Probabilistic Inference 

 Variables: Burglary, Earthquake, Alarm, JohnCalls, 

MaryCalls (shorthand: B, E, A, J, M) 

 Full joint distribution allows inference of all types of 

probabilities  

 E.g. Given random variables A, B, E, J, M,  

 we want P(B|J,M): 

 

 

 Problem: Full joint requires you to specify 

2*2*2*2*2 = 32 values 

 

P(B|J,M) =  P(B,J,M) =  E,A P(B,J,M,E,A) 



Bayesian Network Idea 
 

 Network topology reflects "causal" 

knowledge: 

 A burglar can set the alarm off 

 An earthquake can set the alarm 

off 

 The alarm can cause Mary to call 

 The alarm can cause John to call 

 



Bayesian networks 

 Simple graphical notation for conditional 

independence assertions 

 In many cases, allows compact specification 

of full joint distributions 
 

P(J,M,A,B,E) =  

πi  P (Xi | Parents(Xi)) = 

P(J|A) P(M|A) P(A|B,E) P(B) P(E)  

  Only requires 2+2+4+1+1=10 values  



Keep applying definition of conditional 

probability and use network topology to 

simplify: 

P(J,M,A,B,E) =  

= P(J|M,A,B,E) P(M,A,B,E) 

= P(J|A) P(M,A,B,E) 

= P(J|A) P(M|A,B,E) P(A,B,E) 

= P(J|A) P(M|A) P(A,B,E) 

= P(J|A) P(M|A) P(A|B,E) P(B,E) 

= P(J|A) P(M|A) P(A|B,E) P(B) P(E) 

Why is joint = πi  P (Xi | Parents(Xi))? 



Full Specification of Bayesian Network for Burglars 

and Earthquakes 



Compact Representation of Probabilities in 

Bayesian Network 

 A conditional probability table (CPT) for Boolean Xi with k 

Boolean parents has 2k rows for the  

 combinations of parent values 

 Each row requires one number p for Xi = true 

(the other number for Xi = false is just 1-p) 

 

 If each variable has no more than k parents, an n-variable 

network requires 

 This grows linearly with n vs. O(2n) for full joint 

distribution 
 

 For burglar network, 1+1+4+2+2 = 10 numbers  

    (vs. 25-1 = 31 numbers) for full joint distribution 

Xi 

k parents  

O(n · 2k) numbers 



Bayesian Network Semantics 
 Full joint distribution is defined as product of local 

conditional distributions: 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

 

 

 

 e.g., Joint probability of all variables being true = ?  

          P(j  m  a  b  e) 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 
 

 Similarly, P(j  m  a  b  e) 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 

 

n 
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Probabilistic Inference in BNs 

The graphical independence representation yields efficient 

inference schemes 

We generally want to compute  

 P(X|E) where E is the evidence from sensory 

measurements (known values for variables) 

 Sometimes, may want to compute just P(X) 

One simple inference algorithm:  

 variable elimination (VE) 
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Compute P(B=true | J=true, M=true) 

P(b|j,m) =  e,a P(b,j,m,e,a)  

  =  e,a P(b) P(e) P(a|b,e) P(j|a) P(m|a)  

  =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 



12 Repeated computations  use dynamic programming 

P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Structure of Computation 
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P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Can we derive a general inference algorithm? 

• Join all factors containing a 

• Sum out a to get new 

function of b,e,j,m only 

 



Variable Elimination (VE) Algorithm 

Eliminate variables one-by-one until there is a factor with 

only the query variables: 

1.  join all factors containing that variable, multiplying 

probabilities 

   2. sum out the influence of the variable 

 

P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Eliminate a 

Eliminate e 

Remaining factor is a function of b, j, m 

Function of b,j,m 
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Example of VE: P(J) 

 

 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(A|B,E) P(B) P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) f1(A,B) 

= AP(J|A) MP(M|A) f2(A) 

= AP(J|A) f3(A) 

= f4(J) 
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Other Inference Algorithms? 
 Direct Sampling:  

 Repeat N times: 

 Use random number generator to generate sample values for 

each node 

 Start with nodes with no parents 

 Condition on sampled parent values for other nodes 

 Count frequencies of samples to get an approximation to desired 

distribution 

 Other variants: Rejection sampling, likelihood weighting, Gibbs 

sampling and other MCMC methods (see text) 

 Belief Propagation: A “message passing” algorithm for 

approximating P(X|evidence) for each node variable X 

 Variational Methods: Approximate inference using 

distributions that are more tractable than original ones 

(see text for details) 
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Next Time 

 HMMs and Forward Algorithm for Inference 

 Particle Filtering  

 To Do:  

 Project 4 (last project!) 


