CSE 473

Lecture 22
 (Chapters 14 \& 15)

Probabilistic Inference in Bayesian Networks

Example: Burglars and Earthquakes

- You are at a "Done with the AI class" party.
- Neighbor John calls to say your home alarm has gone off (but neighbor Mary doesn't).
- Sometimes your alarm is set off by minor earthquakes.
- Question: Is your home being burglarized?

Recall: Probabilistic Inference

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls (shorthand: B, E, A, J, M)
- Full joint distribution allows inference of all types of probabilities
- E.g. Given random variables A, B, E, J, M, we want $P(B \mid J, M)$:

$$
P(B \mid J, M)=\alpha P(B, J, M)=\alpha \Sigma_{E, A} P(B, J, M, E, A)
$$

- Problem: Full joint requires you to specify 2*2*2*2*2 = 32 values

Bayesian Network Idea

- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Bayesian networks

- Simple graphical notation for conditional independence assertions
- In many cases, allows compact specification of full joint distributions

$$
\begin{aligned}
& P(J, M, A, B, E)= \\
& \Pi_{i} P\left(X_{i} \mid P \operatorname{arents}\left(X_{i}\right)\right)= \\
& P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E)
\end{aligned}
$$

Only requires $2+2+4+1+1=10$ values

Why is joint $=\Pi_{i} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$?
Keep applying definition of conditional
 probability and use network topology to simplify:
$P(J, M, A, B, E)=$
$=P(J \mid M, A, B, E) P(M, A, B, E)$
$=P(J \mid A) P(M, A, B, E)$
$=P(J \mid A) P(M \mid A, B, E) P(A, B, E)$
$=P(J \mid A) P(M \mid A) P(A, B, E)$
$=P(J \mid A) P(M \mid A) P(A \mid B, E) P(B, E)$
$=P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E)$

Full Specification of Bayesian Network for Burglars and Earthquakes

Compact Representation of Probabilities in Bayesian Network

- A conditional probability table (CPT) for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the other number for $X_{i}=$ false is just $1-p$)

- If each variable has no more than k parents, an n-variable network requires $O\left(n \cdot 2^{k}\right)$ numbers
- This grows linearly with n vs. $O\left(2^{n}\right)$ for full joint distribution
- For burglar network, $1+1+4+2+2=10$ numbers (vs. $2^{5-1}=31$ numbers) for full joint distribution

Bayesian Network Semantics

- Full joint distribution is defined as product of local conditional distributions:

$$
P\left(X_{i}, \ldots, X_{n}\right)=\pi_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

- e.g., Joint probability of all variables being true = ?

$$
\begin{aligned}
& P(j \wedge m \wedge a \wedge b \wedge e) \\
& =P(j \mid a) P(m \mid a) P(a \mid b, e) P(b) P(e)
\end{aligned}
$$

- Similarly, $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

$$
=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)
$$

Probabilistic Inference in BNs

- The graphical independence representation yields efficient inference schemes
- We generally want to compute
- $P(X \mid E)$ where E is the evidence from sensory measurements (known values for variables)
- Sometimes, may want to compute just $P(X)$
- One simple inference algorithm:
- variable elimination (VE)

Compute $\mathrm{P}(\mathrm{B}=$ true | $\mathrm{J}=$ true, $\mathrm{M}=$ true $)$

$$
\begin{aligned}
P(b \mid j, m) & =\alpha \Sigma_{e, a} P(b, j, m, e, a) \\
& =\alpha \Sigma_{e, a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) \\
& =\alpha P(b) \Sigma_{e} P(e) \Sigma_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Structure of Computation

$P(b \mid j, m)=\alpha P(b) \Sigma_{e} P(e) \Sigma_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$
Repeated computations \Rightarrow use dynamic programming

Can we derive a general inference algorithm?

$P(b \mid j, m)=\alpha P(b) \Sigma_{e} P(e) \Sigma_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$

- Join all factors containing a
- Sum out a to get new function of b,e,j,m only

Variable Elimination (VE) Algorithm

- Eliminate variables one-by-one until there is a factor with only the query variables:

1. join all factors containing that variable, multiplying probabilities
2. sum out the influence of the variable

Function of b,j,m

Example of VE: P(J)

$P(J)$
$=\Sigma_{M, A, B, E} P(J, M, A, B, E)$
$=\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E)$
$=\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) \Sigma_{E} P(A \mid B, E) P(E)$
$=\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f 1(A, B)$
$=\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \mathrm{f} 2(\mathrm{~A})$
$=\Sigma_{A} P(J \mid A) f 3(A)$
$=f 4(\mathrm{~J})$

Other Inference Algorithms?

- Direct Sampling:
- Repeat N times:
- Use random number generator to generate sample values for each node
- Start with nodes with no parents
- Condition on sampled parent values for other nodes
- Count frequencies of samples to get an approximation to desired distribution
- Other variants: Rejection sampling, likelihood weighting, Gibbs sampling and other MCMC methods (see text)
- Belief Propagation: A "message passing" algorithm for approximating $\mathrm{P}(\mathrm{X} \mid$ evidence) for each node variable X
- Variational Methods: Approximate inference using distributions that are more tractable than original ones (see text for details)

Next Time

- HMMs and Forward Algorithm for Inference
- Particle Filtering
- To Do:
- Project 4 (last project!)

