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Example: Burglars and Earthquakes 

 You are at a “Done with the AI class” party. 

 Neighbor John calls to say your home alarm has gone off 

(but neighbor Mary doesn't).  

 Sometimes your alarm is set off by minor earthquakes. 

 Question: Is your home being burglarized? 



Recall: Probabilistic Inference 

 Variables: Burglary, Earthquake, Alarm, JohnCalls, 

MaryCalls (shorthand: B, E, A, J, M) 

 Full joint distribution allows inference of all types of 

probabilities  

 E.g. Given random variables A, B, E, J, M,  

 we want P(B|J,M): 

 

 

 Problem: Full joint requires you to specify 

2*2*2*2*2 = 32 values 

 

P(B|J,M) =  P(B,J,M) =  E,A P(B,J,M,E,A) 



Bayesian Network Idea 
 

 Network topology reflects "causal" 

knowledge: 

 A burglar can set the alarm off 

 An earthquake can set the alarm 

off 

 The alarm can cause Mary to call 

 The alarm can cause John to call 

 



Bayesian networks 

 Simple graphical notation for conditional 

independence assertions 

 In many cases, allows compact specification 

of full joint distributions 
 

P(J,M,A,B,E) =  

πi  P (Xi | Parents(Xi)) = 

P(J|A) P(M|A) P(A|B,E) P(B) P(E)  

  Only requires 2+2+4+1+1=10 values  



Keep applying definition of conditional 

probability and use network topology to 

simplify: 

P(J,M,A,B,E) =  

= P(J|M,A,B,E) P(M,A,B,E) 

= P(J|A) P(M,A,B,E) 

= P(J|A) P(M|A,B,E) P(A,B,E) 

= P(J|A) P(M|A) P(A,B,E) 

= P(J|A) P(M|A) P(A|B,E) P(B,E) 

= P(J|A) P(M|A) P(A|B,E) P(B) P(E) 

Why is joint = πi  P (Xi | Parents(Xi))? 



Full Specification of Bayesian Network for Burglars 

and Earthquakes 



Compact Representation of Probabilities in 

Bayesian Network 

 A conditional probability table (CPT) for Boolean Xi with k 

Boolean parents has 2k rows for the  

 combinations of parent values 

 Each row requires one number p for Xi = true 

(the other number for Xi = false is just 1-p) 

 

 If each variable has no more than k parents, an n-variable 

network requires 

 This grows linearly with n vs. O(2n) for full joint 

distribution 
 

 For burglar network, 1+1+4+2+2 = 10 numbers  

    (vs. 25-1 = 31 numbers) for full joint distribution 

Xi 

k parents  

O(n · 2k) numbers 



Bayesian Network Semantics 
 Full joint distribution is defined as product of local 

conditional distributions: 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

 

 

 

 e.g., Joint probability of all variables being true = ?  

          P(j  m  a  b  e) 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 
 

 Similarly, P(j  m  a  b  e) 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 

 

n 
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Probabilistic Inference in BNs 

The graphical independence representation yields efficient 

inference schemes 

We generally want to compute  

 P(X|E) where E is the evidence from sensory 

measurements (known values for variables) 

 Sometimes, may want to compute just P(X) 

One simple inference algorithm:  

 variable elimination (VE) 
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Compute P(B=true | J=true, M=true) 

P(b|j,m) =  e,a P(b,j,m,e,a)  

  =  e,a P(b) P(e) P(a|b,e) P(j|a) P(m|a)  

  =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 



12 Repeated computations  use dynamic programming 

P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Structure of Computation 
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P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Can we derive a general inference algorithm? 

• Join all factors containing a 

• Sum out a to get new 

function of b,e,j,m only 

 



Variable Elimination (VE) Algorithm 

Eliminate variables one-by-one until there is a factor with 

only the query variables: 

1.  join all factors containing that variable, multiplying 

probabilities 

   2. sum out the influence of the variable 

 

P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Eliminate a 

Eliminate e 

Remaining factor is a function of b, j, m 

Function of b,j,m 
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Example of VE: P(J) 

 

 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(A|B,E) P(B) P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) f1(A,B) 

= AP(J|A) MP(M|A) f2(A) 

= AP(J|A) f3(A) 

= f4(J) 
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Other Inference Algorithms? 
 Direct Sampling:  

 Repeat N times: 

 Use random number generator to generate sample values for 

each node 

 Start with nodes with no parents 

 Condition on sampled parent values for other nodes 

 Count frequencies of samples to get an approximation to desired 

distribution 

 Other variants: Rejection sampling, likelihood weighting, Gibbs 

sampling and other MCMC methods (see text) 

 Belief Propagation: A “message passing” algorithm for 

approximating P(X|evidence) for each node variable X 

 Variational Methods: Approximate inference using 

distributions that are more tractable than original ones 

(see text for details) 
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Next Time 

 HMMs and Forward Algorithm for Inference 

 Particle Filtering  

 To Do:  

 Project 4 (last project!) 


