CSE 473

Lecture 20 (Chapters 13 & 14)

Probabilistic Inference

Today's Outline

- Probability Theory
- Probabilistic Inference
- Conditional Independence
- Bayesian Networks

Types of Random Variables

Propositional or Boolean random variables e.g., *Cavity* (do I have a cavity?)

Discrete random variables (*finite* or *infinite*) e.g., Weather is one of (*sunny*, *rain*, *cloudy*, *snow*) Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

Axioms of Probability Theory

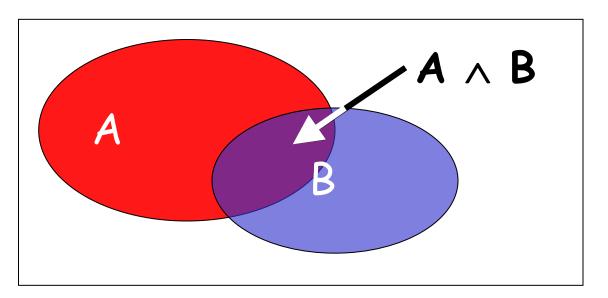
Just 3 are enough to build entire theory!

1. All probabilities between 0 and 1

 $0 \leq P(A) \leq 1$

- 2. P(true) = 1 and P(false) = 0
- 3. Probability of disjunction of events is:

 $P(A \lor B) = P(A) + P(B)$



Prior Probability and Probability Distribution

Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.2 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments: $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle \text{ (normalized, i.e., sums to 1)}$ sunny, rain, cloudy, snow

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s

 $\mathbf{P}(Weather, Cavity) = a \ 4 \times 2 \text{ matrix of values:}$

Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

We will see later how any question can be answered by the joint distribution

Joint Probability

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s

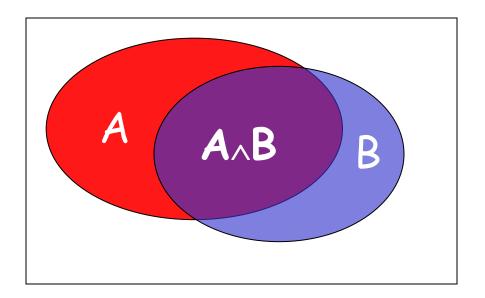
 $\mathbf{P}(Weather, Cavity) = a \ 4 \times 2 \text{ matrix of values:}$

Weather =	sunny	rain	cloudy	snow
Cavity = true				
Cavity = false	0.576	0.08	0.064	0.08

We will see later how any question can be answered by the joint distribution

Conditional Probability

- P(A | B) is the probability of A given B
- Assumes that B is the only info known.
- Defined as: $P(A | B) = \frac{P(A, B)}{P(B)} = \frac{P(A \land B)}{P(B)}$



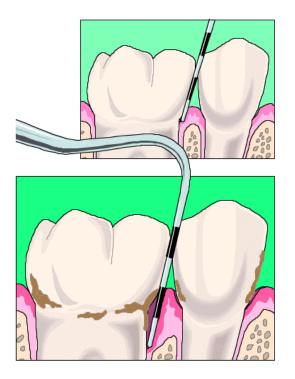
Conditional Probability Examples

- P(Cavity = true | Toothache = true) = probability of cavity given toothache (lowercase denotes event is true)
- Notation for conditional <u>distribution</u>:

P(Cavity | Toothache) = 2-element vector of 2-element vectors (2 Pr values given Toothache is true and 2 Pr values given Toothache is false)

- If we know more, e.g., Cavity = true, then we have
 P(Cavity=T | toothache, Cavity=T) = 1
- New evidence may be irrelevant, allowing simplification:
- P(Cavity=T | toothache, Weather = sunny) = P(Cavity=T | toothache)

Dilemma at the Dentist's



What is the probability of a cavity given a toothache? What is the probability of a cavity given the probe catches?

Three R.V.'s, each either T or F: Cavity, Toothache, Catch

Probabilistic Inference by Enumeration

Start with the joint distribution: P(Cavity, Toothache, Catch)

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$

P(toothache)= .108+.012+.016+.064 = .20 or 20%

(Note convention: All lowercase is used to denote that event is true)

Inference by Enumeration

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

P(toothachevcavity) = ?

.20 + .108 + .012 + .072 + .008 - (.108+.012)

= .28

Inference by Enumeration

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Problems with Enumeration

- Worst case time: O(dⁿ)
 where d = max arity of random variables
 e.g., d = 2 for Boolean (T/F)
 and n = number of random variables
- Space complexity also O(dⁿ)
 - Size of joint distribution
- Problem: Hard/impossible to estimate all O(dⁿ) entries of joint for large problems

Do we need to compute all O(dⁿ) possible entries of joint distribution?

Independence

Variables A and B are independent iff:

$$P(A \mid B) = P(A)$$
$$P(B \mid A) = P(B)$$

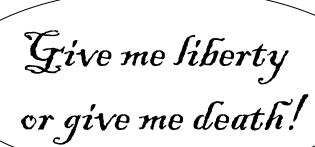
These two constraints are logically equivalent

Therefore, if *A* and *B* are independent:

$$P(A \mid B) = P(A) \text{ and } P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

i.e., $P(A \wedge B) = P(A)P(B)$

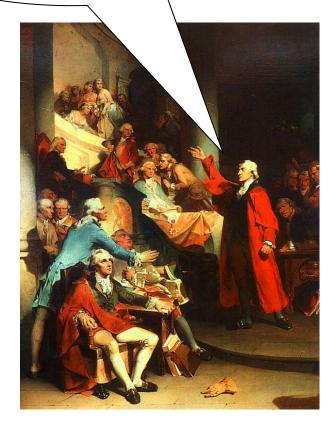
Why is independence useful?



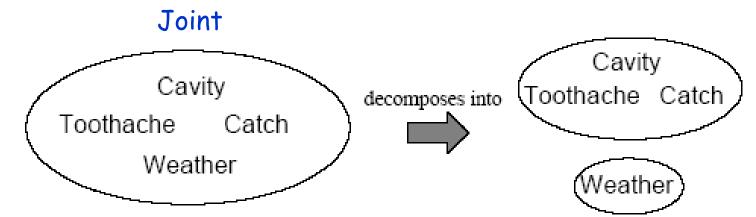
IN CONGRESS. JULY 4. 1776.

The unanimous Declaration of the time anter States of America.

and my find Stores f Batters Jametty Symatric Statts	Tomor Designation of Completioners	John Hancord	Hat monit	Span ! Lever	Brich Bertitt Tom Migues Sour Science Scher Mismis
Gorffielden.	6 har q. #. s.p. ;.	her Card For Store Good for Good to	Standarton Gertanter Gertanter Gertanter James Miller	Leven Toms	Bothas Paints
	"Fat Hay were for "	George Higher Reduce Burry Los The Pulle Mon	Git-Tills famer finning-	Las Depterson	William Elling -5 Sugar Anarhan Bernary Control Barton
		Berry Herrisony M. John p. Sum Lastport des Caller Brastin	Star and Army	Alter Flock	construction



Independence



2*2*2*4=32 values

 $\begin{array}{l} \mathbf{P}(Toothache, Catch, Cavity, Weather) \\ = \mathbf{P}(Toothache, Catch, Cavity) \mathbf{P}(Weather) \\ & \quad \text{Only } 2^{\star}2^{\star}2^{\star}2^{\star}4 = 12 \text{ values needed} \\ \textbf{32 entries reduced to 12; for } n \text{ independent biased coins, } 2^n \rightarrow n \end{array}$

Complete independence is powerful but rare. What to do if it doesn't hold?

Conditional Independence

Joint distribution:

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity)$

Now in the joint distribution, instead of 7 entries, only need 5 (why?)

Conditional Independence II

Given:

- $\mathbf{P}(Catch \mid Toothache, Cavity) = \mathbf{P}(Catch \mid Cavity)$
- Joint probability distribution: P(Catch,Toothache,Cavity)
- = **P**(*Catch* | *Toothache*, *Cavity*)**P**(*Toothache*, *Cavity*)
- = **P**(*Catch* | *Toothache*, *Cavity*)**P**(*Toothache* | *Cavity*)**P**(*Cavity*)
- = **P**(*Catch* | *Cavity*)**P**(*Toothache* | *Cavity*)**P**(*Cavity*)
 - 2 + 2 + 1 = 5 independent numbers

Power of Cond. Independence

 Often, conditional independence can reduce the storage complexity of the joint distribution from exponential to linear!!

 Conditional independence is the most basic & robust form of knowledge in uncertain environments.

Thomas Bayes

Reverand Thomas Bayes Nonconformist minister (1702-1761)

- Publications:
- Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and Government is the Happiness of His Creatures (1731)
- An Introduction to the Doctrine of Fluxions (1736)
- An Essay Towards Solving a Problem in the Doctrine of Chances (1764)

Divine Benevolence :

PRINCIPAL END

Of the Divise

PROVIDENCE and GOVERNMENT

15 T H B

Happinels of his Creatures.

BEING

An Answen to a Pamphlet, entitled, Divine Rellitude ; or, An Inquiry concertaing the Maral Perfeditors of the Deity.

WITE

A Refutation of the Notions therein advanced concerning Beauty and Oeder, the Reafon of Penifinment, and the Necefity of a State of Teial antecedent to perfect Happinetis.

LONDON: Printed for Јанж Noan, ur the White-Herr in Chargele, neur Матан-Саров, Миссикия,

[Price One Shilling.]

Next Time

- Bayesian Networks
- To Do
 - Project 3
 - Read Chapter 14