CSE 473

Lecture 19 (Chapter 21 & 13)

Q Learning and Uncertainty

Today's Outline

- Feature-based Q Learning
- Uncertainty
 - Probability Theory

Recall: Q-Learning

- Online sample-based Q-value iteration.
- At each time step:
 - Execute action and get new sample (s,a,s',r)
 - Incorporate new sample into running average of Q: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a'))$ where α is the learning rate $(0 < \alpha < 1)$.
 - Update policy:

$$\pi(s) = \arg\max_{a} Q(s,a)$$

Problem: Generalization

- Let's say we discover through experience that this "trapped" state is bad:
- In naïve Q learning, we know nothing about new but related states such as this and its Q value:
 - Or even this third one!

Feature-Based Representations

- Solution: Describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
- Can also describe a Q-state = (s, a) with features (e.g. whether action a in state s moves PacMan closer to food or ghost)

Approximating Q-values using Features

 Write a Q function as a linear weighted combination of feature values:

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

Need to learn the weights w_i – how?

Recall:

We want Q to approximate sample-based average: $Q(s,a) \leftarrow \frac{1}{t} \sum_{t \text{ samples}} \left(r + \gamma \max_{a'} Q(s',a') \right)$

where:

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Find *w_i* that *minimize error* for each sample:

$$\left| (r + \gamma \max_{a'} Q(s', a')) - Q(s, a) \right|^2$$

Feature-based Q-learning

transition = (s, a, r, s')

$$\begin{aligned} \mathsf{Error} &= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ w_i \leftarrow w_i + \alpha \left[\begin{array}{c} \mathsf{Error} \end{array} \right] f_i(s, a) \end{aligned}$$

Intuitive interpretation:

- Weights of active features (f_i is 1 or high value) adjusted
- If a feature is active and the Q(s,a) prediction does not match the desired value: $r + \gamma \max_{a'} Q(s',a')$

then change weights according to positive/negative error

Example: Q-Pacman

 $Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$ Suppose $f_{DOT}(s, \text{NORTH}) = 0.5$ $f_{GST}(s, \text{NORTH}) = 1.0$ Q(s,a) = +1R(s, a, s') = -500error = -501 , $\alpha = 0.004$ $w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$ $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

a = NORTHr = -500

 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$ = -1.5 Learning algorithm decreases Q value as required!

Q-learning Pac-Man (no features)

Q-learning, no features, 50 learning trials

Q-learning Pac-Man (no features)

Q-learning, no features, 1000 learning trials

Q-learning Pac-Man (with features)

Feature-based Q-learning, 50 learning trials

What if Pac-Man does not know the exact state and only gets local sensor readings about the state

(e.g., camera, laser range finder)?

Enter Uncertainty...

Example: Catching a flight

- Suppose you have a flight at 6pm
- When should you leave for SeaTac?
 - What are the traffic conditions?
 - How crowded is security?
 - How desperately do you want that beer?

Leaving time before 6pm	P(arrive-in-time)
• 20 min	0.05
• 30 min	0.25
• 45 min	0.50
• 60 min	0.75
 120 min 	0.98
1 day	0.99999

Probability Theory: Beliefs about events Utility theory: Representation of preferences

Decision about when to leave depends on both: Decision Theory = Probability + Utility Theory

What Is Probability?

- Probability: Calculus for dealing with nondeterminism and uncertainty
- Where do the numbers for probabilities come from?
 - Frequentist view (numbers from experiments)
 - Objectivist view (numbers inherent properties of universe)
 - Subjectivist view (numbers denote agent's beliefs)

Why Should You Care?

- The world is full of uncertainty
 - Incomplete knowledge of the world
 - Noisy sensor readings
 - Ambiguous sensor readings (e.g., images)
- Probability: new foundation for AI (& CS!)
- "Big Data" is today's buzz word!
 - Statistics and CS are both about data
 - Statistics lets us summarize and understand it
 - Statistics is the basis for most learning

Logic vs. Probability

Symbol: Q, R,	Random variable: Q, R,
Boolean values: T, F	Values/Domain: you specify e.g. {heads, tails}, Reals
State of the world: Assignment of T/F to all symbols Q, R	Atomic event: a complete assignment of values to Q, R, • Mutually exclusive • Exhaustive

Next Time

- Probabilistic Inference
- Conditional Independence
- Bayes Theorem
- To Do
 - Project 3
 - Chapter 13 and 14