CSE 473

Lecture 18
(Chapter 21)

einforcement Learnin

— WATCH WHAT |
CAN MAKE PAVLOV DO.
AS SOON AS | DROOL,
HE'LL SMILE AND WRITE
IN HIS LITTLE Book.

T - P s —
| | ;
et e U e M@.a ' A
e e L .
e el fl = ’ st .
A T e T e T DT I O
- N s - & N - | - e N Wl - = Y
CEeL = Tea T =~ = TenT
S S =0 2 e =
i . Y MR -~ R
’/‘Jr-h o - ’/\J"-H *
I’\-"\" . I'_'\.‘ #
.- el - el e s
\ - - \ -
N IEREY Ol
Il s > W
et . I

© CSE Al faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Today’s Outline

* Reinforcement Learning
= Q-learning
= Exploration versus Exploitation
» ¢-Greedy Q-learning
» Feature-based Q-learning

Recall: Reinforcement Learning (RL)

New
State

Reward Next

Action

Environment

Two main approaches to RL

= Model-based approaches:

= Explore environment & learn model T=P(s’ |s,a)
and R(s,a,s’)

= Use model to compute policy MDP-style
» \Works well when state-space is small

= Model-free approach:

= Don’ t learn a model
= Learn value function (Q value) or policy directly
= \Works better when state space is large

Algorithms for RL

= We will focus on Q-learning
* From Q-value iteration to Q-learning

= Approaches for mixing exploration &
exploitation

* g-greedy method

Recall: Q-value iteration

Qit1(s,a) = S T(s,a,8) |R(s,a,8) +9 maxQu(s',a')
N S

In RL, we don’t have this! (RL is model-free)
But we get a sample at each time step t:

(St’a'[’ r:[’St+1)

Environment

Q-learning ldea

Instead of expectation under T:

Qit1(s,a) = Y T(s,a,8) |R(s,a.8) + 7 max Qi(s',)

What if we compute a running average of
Q from all samples received thus far?

Q(s,a) 2 > (r+7/m3xQ(s',a'))

(t samples

Why does this compute the correct expectation?
Because environment produces samples at the right
frequencies!

Recall: Running Average
= Running average of t samples of a quantity x:

X X X X

X, = t

X Xy Xy (t—1)+xt
t t-1) t

(t-1)_ 1

; Xiq T I X,

=(1-a)X_, +aXx, wherea=1/t (forthiscase)

= Running average of Q:

Q(s,a) « (1—-x)Q(s,a)+a(r+y mgx Q(s',a"))

Q-Learning Algorithm

= Q-Learning = Online sample-based Q-value
iteration. At each time step:

= Execute action and get new sample (s,a,s’,r)

* |ncorporate new sample into running average of Q:
Q(s,a) « (1-2)Q(s,a) + a(r +y max Q(s',a’))
o
where « Is the learning rate (O < a <1).
= Update policy:

7z(s) =arg max Q(s, a)

a

Q-learning example
(with manual control)

10

RL agents must tackle an Exploration

versus Exploitation tradeoff

RL agents must tackle an Exploration

versus Exploitation tradeoff

* You have explored part of your 500 -100 100
world and found a reward of 100 4 : 4
— 1S this the best we can do?

= Exploitation: Stick with what you
know and accumulate reward

» RISK: You may be missing out on
better rewarding states elsewhere

= Exploration: Explore world for
states w/ more reward

» RISK: Wasting time & possibly
getting negative reward

e-Greedy Action Selection for Q-learning

= Balance exploration versus exploitation by
allowing some random actions

= Every time step, flip a coin

= With probabillity €, act randomly

= With probability 1- €, act according to current policy
(¢ Is a small positive parameter you choose)

= Problems with random actions?

= Good for exploration but bad once learning is done
(no need to explore if environment is not changing)

= Solution: lower € over time

e-Greedy Q-Learning (Movie)

Q-Learning Final Solution

= Q-learning produces table of Q(s,a) values

%]
]

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
» |f you explore enough and..
» |f you make the learning rate oo small enough
= ... but not decrease it too quickly!
= Q-learning not too sensitive to how you select actions (!)

= Neat property: “off-policy” learning
= |earn optimal policy without following it (doing exploration etc.)

Q-Learning — Small Problem

42525 LA

Doesn’t work in the real world

y

* |n realistic situations, we can’t possibly learn about
every single state!

* Too many states: Cannot visit them all in training
* Too many states: Cannot hold all Q-values in memory

* Instead, we need to generalize:
»= | earn about a few states from experience
= Generalize that experience to new, similar states
(Fundamental idea in machine learning)

Example: Pacman

= | et's say we discover
through experience
that this “trapped”
state Is bad:

= In naive Q learning,
we know nothing about
new but related states
such as this and its Q
value:

= Or even this third one!

Next Time

= Feature-based Q-learning
= Uncertainty and Probability

* To Do
* Finish Chapter 21
» Read Chapter 13
= \Work on Project 3

19

