CSE 473

Lecture 16

Markov Decision Processes (MDPs) Part II

Recall: Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s,a,s')
 - Probability that action a in s leads to s'
 - i.e., P(s' | s,a)
 - Also called "the model"
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state

Similarly for actions E, S, W

MDP Search Trees

Each MDP state gives an expectimax-like search tree

Utilities of Reward Sequences

- What is an "optimal" policy?
 - Each transition s,a,s' produces a reward (+ve, -ve, or 0)
 - Pick actions that maximize utility
 - Need to define utility of a *sequence* of rewards
- Idea 1:
 - Additive utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

Problem: Infinite state sequences have infinite total reward

Defining Utilities

- Solution:
 - **Discounting:** Make infinite sum finite using γ (0 < γ < 1)

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$
$$U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le \frac{R_{\text{max}}}{(1 - \gamma)}$$

- Sooner rewards have higher utility than later rewards
- Also helps the algorithms converge

Defining the Optimal Policy

- Define the value of a state s:
 V*(s) = expected utility starting in s and acting optimally
- Define the value of a Q-state (s,a):

Q^{*}(s,a) = expected utility starting in s, taking action a and thereafter acting optimally

Define the optimal policy:

 $\pi^*(s)$ = optimal action from state s

Values

Optimal Policy

Bellman Equation

- Simple one-step look-ahead *recursive* relationship between optimal utility values
- Start with:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Richard Bellman (1920-1984)

Combine to get Bellman Equation:

 $V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$ $V^* \blacktriangle S$

recursive

Why not use Expectimax?

Problems:

- The tree is usually infinite
- Same states appear over and over
- Need to search once for each state
- Idea: Value iteration
 - Compute optimal values for all states all at once iteratively
 - Bottom-up dynamic programming
 - Simple table look-up for any state
- Calculates estimates V_k^{*}(s) in iteration k
 - The optimal value considering only next k time steps (next k rewards)
 - As $k \rightarrow \infty$, V_k approaches the optimal value

Value Iteration (VI)

Idea:

- Start with V₀^{*}(s) = 0, which we know is right (why?)
- Given V_i^{*}, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: VI will converge to optimal values
 - Basic idea: approximations get refined towards optimal values

Example: Bellman Updates

Example: γ=0.9, noise=0.2, living penalty=0

Example: Value Iteration

 Information propagates outward from terminal states and eventually all states have correct value estimates

Example: Value Iteration (Movie)

^	^	^	
0.00	0.00	0.00	0.00
		^	
0.00		0.00	0.00
^	^	^	^
0.00	0.00	0.00	0.00
VALUES AFTER 0 ITERATIONS			

Optimal Policy: Computing Actions

- Which action to chose in state s:
 - Given optimal Q*?

Best action = $\arg \max_{a} Q^*(s, a)$

• Given optimal values V*?

Best action = $\arg \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$

Value Iteration Complexity

Problem size:

- |A| actions and |S| states
- Each Iteration For all s: $V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$
 - Time: $O(|A| \cdot |S|^2)$
 - Space: O(|S|)
- Num of iterations to converge
 - Can prove that it can be exponential in the discount factor $\boldsymbol{\gamma}$

Is there a faster alternative to value iteration?

Yeah, crazy little thing called policy iteration!

Next Time

- Policy Iteration and Reinforcement Learning
- To Do
 - Read chapters 17 and 21