CSE 473
Lecture 16

Markov Decision Processes (MDPs)
Part II

© Original Atist e
Reproductionirights:obtainable from
www. CartoonStockcom

S

BRIGeEueq (] yoies

© CSE Al faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Recall: Markov Decision Processes

= An MDP is defined by:
o Asetofstatess €S
e Asetofactionsae A
e A transition function T(s,a,s’)

e Probability that action ain
sleadsto s’

i.e., P(s’ | s,a)
e Also called “the model”
e Areward function R(s, a, s’)
e Sometimes just R(s) or R(s’)
e A start state
e Maybe a terminal state

1 START
1 2 3 4
0.8
0.1 0.1 _
Action =
North (N)

Similarly for actions E, S, W

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

State
< “a
(s,a)isa ol
Q-state ’ r__’ (s,a,5”) is called a
~ transition
B T(s,a,8") = P(s’[s,a)

Reward = R(s,a,5’)

Utilities of Reward Sequences

= What is an “optimal” policy?
e Each transition s,a,s’ produces a reward (+ve, -ve, or 0)
e Pick actions that maximize utility
e Need to define utility of a sequence of rewards

= |deal:
= Additive utility:

U([TC))T].?TQ:"']) :TO+7"]_ -I—TQ—I—---

= Problem: Infinite state sequences have infinite total reward

Defining Utilities

= Solution:
e Discounting: Make infinite sum finite usingy (0<y<1)

U(lrg,r1,72,...]) ='r0—|—f}/fr1-|—72rr2...
U([TOJ . TOO]) — Z ’Yt”f't S Rmax/(l — ’y)
t=0

e Sooner rewards have higher utility than later rewards
e Also helps the algorithms converge

Defining the Optimal Policy

= Define the value of a state s:
V*(s) = expected utility starting in s and acting optimally
= Define the value of a Q-state (s,a):

Q’(s,a) = expected utility starting in s, taking action a and
thereafter acting optimally

= Define the optimal policy:
7" (s) = optimal action from state s

Values Optimal Policy

3 —- —r- —-

=

Bellman Equation

= Simple one-step look-ahead recursive
relationship between optimal utility values

= Start with:
V¥(s) = maxQ*(s, a)

Richard Bellman
(1920-1984)

QR*(s,a) =) T(s,a,s") [R(s, a,s’) + "YV*(SI)]

= Combine to get Bellman Equation:

V*i(s) = m(?XZT(S, a,s) {R(s, a,s’) + WV*(<)}

recursive

Why not use Expectimax?

= Problems:
e The tree is usually infinite
e Same states appear over and over
e Need to search once for each state
= |dea: Value iteration

e Compute optimal values for all states
all at once iteratively

e Bottom-up dynamic programming
e Simple table look-up for any state
= Calculates estimates V, (s) in iteration k

e The optimal value considering only
next k time steps (next k rewards) o

e As k— oo, V, approaches the optimal
value

Value Iteration (VI)

" |dea:
e Start with V,"(s) = 0, which we know is right (why?)
e Given V., calculate the values for all states for depth i+1:

Vig1(s) «— mC?XZT(s,a,, s") [R(s,a, ") + ny,;(s’)}

S

e This is called a value update or Bellman update
e Repeat until convergence

= Theorem: VI will converge to optimal values
= Basic idea: approximations get refined towards optimal values

Example: Bellman Updates

Example: y=0.9, noise=0.2,
living penalty=0

? +1
) -1 V-l
2 | 2

1 2 3 4 1 2 3 4

Visr(s) = max 3 T(s,a,8) [R(s,a,8) + 9Vi(s)] = max Qupa (5, a)

Q1((3, 3), right) = ZT((B, 3), right, s) [R((B, 3),right, s’) + nyi(s’)]

= 0.8 [0.0+0.9%1.0]+ 0.1 %[0.0+ 0.9%0.0] + 0.1 # [0.0 + 0.9 % 0.0]
=0.72

Example: Value Iteration

+1

+ 1 3 O

" |Information propagates outward from terminal
states and eventually all states have correct value
estimates

Example: Value Iteration (Movie)

VALUES AFTER 0 ITERATIONS

Optimal Policy: Computing Actions

= \Which action to chose in state s:

e Given optimal Q*?

. S
Best action= arg maxQ*(s,a) /
a A N T
* S,

A’Q a

e Given optimal values V*?

Best action = argmax Y T(s,a,s)[R(s,a,s) +~V*(s)]
a
s’ S

Value Iteration Complexity

" Problem size:
e |A| actions and |S| states

0 i For all s:
Each Iteration Vo (5) :mg,xZT(s,a,s’) [R(s, a,8) +AVi(s)

e Time: O(|A]-]S]?)
e Space: O(|S])

= Num of iterations to converge

e Can prove that it can be exponential in the
discount factor y

Is there a faster alternative to value iteration?

Yeah, crazy little
thing called
policy iteration!

Next Time

= Policy Iteration and Reinforcement Learning

= To Do
e Read chapters 17 and 21

17

