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Recall: Markov Decision Processes 

 An MDP is defined by: 
• A set of states s  S 
• A set of actions a  A 
• A transition function T(s,a,s’) 

• Probability that action a in 
s leads to s’ 
i.e., P(s’ | s,a) 

• Also called “the model” 
• A reward function R(s, a, s’)  

• Sometimes just R(s) or R(s’) 
• A start state  
• Maybe a terminal state 

Action =  

North (N) 

Similarly for actions E, S, W 



MDP Search Trees 

 Each MDP state gives an expectimax-like search tree 
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Utilities of Reward Sequences 

 What is an “optimal” policy? 

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0) 

• Pick actions that maximize utility 

• Need to define utility of a sequence of rewards 

 

 

 

 

 Problem: Infinite state sequences have infinite total reward 

 

 Idea 1: 
 Additive utility: 

 

 



Defining Utilities 

 Solution: 

• Discounting: Make infinite sum finite using   (0 <  < 1)  

 

 

 

 

• Sooner rewards have higher utility than later rewards 

• Also helps the algorithms converge 

 



Defining the Optimal Policy 

 Define the value of a state s: 
V*(s) = expected utility starting in s and acting optimally 

 Define the value of a Q-state (s,a): 
Q*(s,a) = expected utility starting in s, taking action a and 

thereafter acting optimally 
 Define the optimal policy: 

*(s) = optimal action from state s 

Values Optimal Policy 



Bellman Equation 
 Simple one-step look-ahead recursive 

relationship between optimal utility values 

 Start with: 

 

 

 
 

 Combine to get Bellman Equation: 

Richard Bellman 
(1920-1984) 
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Why not use Expectimax? 

 Problems: 
• The tree is usually infinite  
• Same states appear over and over  
• Need to search once for each state 

 Idea: Value iteration 
• Compute optimal values for all states 

all at once iteratively  
• Bottom-up dynamic programming 
• Simple table look-up for any state 

 Calculates estimates Vk
*(s) in iteration k 

• The optimal value considering only 
next k time steps (next k rewards) 

• As k , Vk approaches the optimal 
value 
 



Value Iteration (VI) 
 Idea: 

• Start with V0
*(s) = 0, which we know is right (why?) 

• Given Vi
*, calculate the values for all states for depth i+1: 

• This is called a value update or Bellman update 
• Repeat until convergence 

 Theorem: VI will converge to optimal values 
 Basic idea: approximations get refined towards optimal values 



Example: Bellman Updates 
Example: =0.9, noise=0.2, 

living penalty=0 
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= 0.72 



Example: Value Iteration 

 Information propagates outward from terminal 
states and eventually all states have correct value 
estimates 

V1 V2 



Example: Value Iteration (Movie) 



Optimal Policy: Computing Actions 

 Which action to chose in state s: 

• Given optimal Q*? 

• Given optimal values V*? 
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Best action =  

Best action =  



Value Iteration Complexity 

 Problem size:  

• |A| actions and |S| states 

 Each Iteration 
 

• Time: O(|A|⋅|S|2) 

• Space: O(|S|) 

 Num of iterations to converge 

• Can prove that it can be exponential in the 
discount factor γ 

For all s: 



Is there a faster alternative to value iteration? 

Yeah, crazy little 

thing called 

policy iteration! 



Next Time 

 Policy Iteration and Reinforcement Learning 

 To Do 

• Read chapters 17 and 21 
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