
CSE 473

Lecture 16

Markov Decision Processes (MDPs)

Part II

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Recall: Markov Decision Processes

 An MDP is defined by:
• A set of states s S
• A set of actions a A
• A transition function T(s,a,s’)

• Probability that action a in
s leads to s’
i.e., P(s’ | s,a)

• Also called “the model”
• A reward function R(s, a, s’)

• Sometimes just R(s) or R(s’)
• A start state
• Maybe a terminal state

Action =

North (N)

Similarly for actions E, S, W

MDP Search Trees

 Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) is called a

transition

T(s,a,s’) = P(s’|s,a)

Reward = R(s,a,s’)

s,a,s’

s is a

state

(s, a) is a

“Q-state”

Utilities of Reward Sequences

 What is an “optimal” policy?

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0)

• Pick actions that maximize utility

• Need to define utility of a sequence of rewards

 Problem: Infinite state sequences have infinite total reward

 Idea 1:
 Additive utility:

Defining Utilities

 Solution:

• Discounting: Make infinite sum finite using (0 < < 1)

• Sooner rewards have higher utility than later rewards

• Also helps the algorithms converge

Defining the Optimal Policy

 Define the value of a state s:
V*(s) = expected utility starting in s and acting optimally

 Define the value of a Q-state (s,a):
Q*(s,a) = expected utility starting in s, taking action a and

thereafter acting optimally
 Define the optimal policy:

*(s) = optimal action from state s

Values Optimal Policy

Bellman Equation
 Simple one-step look-ahead recursive

relationship between optimal utility values

 Start with:

 Combine to get Bellman Equation:

Richard Bellman
(1920-1984)

a

s

s, a

s,a,s’

s’

T

Q*

V*

V*

recursive

Why not use Expectimax?

 Problems:
• The tree is usually infinite
• Same states appear over and over
• Need to search once for each state

 Idea: Value iteration
• Compute optimal values for all states

all at once iteratively
• Bottom-up dynamic programming
• Simple table look-up for any state

 Calculates estimates Vk
*(s) in iteration k

• The optimal value considering only
next k time steps (next k rewards)

• As k , Vk approaches the optimal
value

Value Iteration (VI)
 Idea:

• Start with V0
*(s) = 0, which we know is right (why?)

• Given Vi
*, calculate the values for all states for depth i+1:

• This is called a value update or Bellman update
• Repeat until convergence

 Theorem: VI will converge to optimal values
 Basic idea: approximations get refined towards optimal values

Example: Bellman Updates
Example: =0.9, noise=0.2,

living penalty=0

?

?

? ? ? ?

?

? ?

= 0.72

Example: Value Iteration

 Information propagates outward from terminal
states and eventually all states have correct value
estimates

V1 V2

Example: Value Iteration (Movie)

Optimal Policy: Computing Actions

 Which action to chose in state s:

• Given optimal Q*?

• Given optimal values V*?

a

s

s, a Q*

a

s

s, a

s,a,s’

s’

T

V*

Best action =

Best action =

Value Iteration Complexity

 Problem size:

• |A| actions and |S| states

 Each Iteration

• Time: O(|A|⋅|S|2)

• Space: O(|S|)

 Num of iterations to converge

• Can prove that it can be exponential in the
discount factor γ

For all s:

Is there a faster alternative to value iteration?

Yeah, crazy little

thing called

policy iteration!

Next Time

 Policy Iteration and Reinforcement Learning

 To Do

• Read chapters 17 and 21

17

