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Course Overview: Where are we? 

• Introduction & Agents 

• Search and Heuristics  

• Adversarial Search 

• Logical Knowledge Representation 

• Markov Decision Processes (MDPs) 

• Reinforcement Learning 

• Uncertainty & Bayesian Networks 

• Machine Learning 



MDPs 

  Markov Decision Processes 

• Planning Under Uncertainty 

 

• Mathematical Framework 

• Bellman Equation 

• Value Iteration 

• Policy Iteration 

 

• Reinforcement Learning 
Andrey Markov   

(1856-1922) 



Planning Agent 

What action 

next?   

Percepts Actions 

Environment 

Static vs. Dynamic 

Fully  

vs. 

 Partially  

Observable 

Deterministic  
vs.  

 Stochastic 



Review: Expectimax 
 What if we don’t know what the result of an 

action will be? E.g., 
• In Solitaire, next card is unknown 
• In Pacman, the ghosts act randomly 

 

 
  Today, we formalize this as a Markov Decision Process 

  Handles intermediate rewards & infinite search trees 
  More efficient processing 

 Can do expectimax search 
 Max nodes as in minimax search 
 Chance nodes, like min nodes, 

except the outcome is uncertain - 
take average (expectation) of 
children 

 Calculate expected utilities 20 2 6 4 

MAX 

Chance 
5 5.6 

1/6  5/6  4/5  1/5  

A1 
A2 



Example: Grid World 

 Walls block the agent’s path 

 Agent’s actions are noisy: 

 80% of the time, North action 
takes the agent North  
(assuming no wall) 

 10% - actually go West 

 10% - actually go East 

 If there is a wall in the chosen 
direction, the agent stays put 

 Small “living” penalty (e.g., -0.04) 
each step 

 Big reward/penalty (e.g., +1 or - 1) 
comes at the end 

 Goal: maximize sum of rewards 



Markov Decision Processes 

 An MDP is defined by: 
• A set of states s  S 
• A set of actions a  A 
• A transition function T(s,a,s’) 

• Probability that action a in 
s leads to s’ 
i.e., P(s’ | s,a) 

• Also called “the model” 
• A reward function R(s, a, s’)  

• Sometimes just R(s) or R(s’) 
• A start state  
• Maybe a terminal state 



What is Markov about MDPs? 

 

 “Markov” generally means that  
• Given the present state,  the future is 

independent of the past 

 For Markov decision processes, 

“Markov” means: 

Next state only depends on 

current state and action 

Andrey Markov 
(1856-1922) 



Solving MDPs 

 Instead of path/plan, use an optimal policy *: S → A 

• Policy   prescribes an action for every state 

• Defines a reflex agent 

• An optimal policy maximizes expected reward if followed 

 In deterministic search problems, want an optimal path or plan 
(sequence of actions) from start to a goal 

 MDP: Stochastic actions, don’t know what next state will be 



Solving MDPs 

Optimal policy? 

 Assume R(s, a, s’) = -0.04      

for all non-terminal s 



More Example Optimal Policies 

R(s) = -2.0 R(s) = -0.4 

R(s) = -0.04 R(s) = -0.01 

Conservative 

Aggressive Suicidal 



Another Example:  

High-Low Card Game 



Example: High-Low 

 Suppose three card types: 2, 3, 4 
• Infinite deck, twice as many 2’s 

 Start with 3 showing 
 After each card, say “high” or “low” 
 New card is revealed 

• If you’re right, you win the points 
shown on the new card 

• Tie: no reward, choose again 
• If you’re wrong, game ends 

3 

 Differences from expectimax problems:  
 #1: get rewards as you go 
 #2: you might play forever! 



High-Low as an MDP 
 States:  

• 2, 3, 4, done 
 Actions:  

• High, Low 
 Model: T(s, a, s’) = P(s’ | s, a): 

• P(s’=4 | 4, Low) = 1/4   
• P(s’=3 | 4, Low) = 1/4 
• P(s’=2 | 4, Low) = 1/2 
• P(s’=done | 4, Low) = 0 
• P(s’=4 | 4, High) = 1/4  
• P(s’=3 | 4, High) = 0 
• P(s’=2 | 4, High) = 0 
• P(s’=done | 4, High) = 3/4 
• … 

3 

• Rewards: R(s, a, s’): 
• Number shown on s’ if  s’> s 

 a=“High” etc. 
• 0 otherwise 

• Start: 3 



Expectimax-like Search Tree for High-Low 

Low High 

High Low   High Low 

, Low , High 

T = 0.5, 

R = 2 

T = 0.25, 

R = 0 

T = 0, 

R = 0 

T = 0.25, 

R = 0 

done 



MDP Search Trees 

 Each MDP state gives an expectimax-like search tree 

a 

s 

s’ 

s, a 

(s,a,s’) is called a 

transition 

T(s,a,s’) = P(s’|s,a) 

Reward = R(s,a,s’) 

s,a,s’ 

s is a 

state 

(s, a) is a 

“Q-state” 



Utilities of Reward Sequences 

 What is an “optimal” policy? 

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0) 

• Need to define utility of a sequence of rewards 

 Idea 1: 
 Additive utility: 

 

 



Defining Utilities 

 Problem: Infinite state sequences have  

      infinite total reward 

 Solutions: 

• Impose a Finite Horizon (deadline): 

• Terminate episodes after a fixed T steps (e.g. life) 

• Gives nonstationary policies ( depends on time left) 

• Absorbing state: guarantee that a terminal state will 
eventually be reached (like “done” for High-Low) 

• Discounting: Make infinite sum finite using   (0 <  < 1)  

3 



Discounting Rewards 

 Discount rewards by 
 < 1 each time step 

• Sooner rewards have 
higher utility than 
later rewards 

• Also helps the 
algorithms converge 

1 

 

2 



Next Time 

 Using utility to find the optimal policy 

 To do 

• Read chapters 13 and 17 

20 


