CSE 473
Lecture 15

Markov Decision Processes (MDPs)

©OignalAtist_______,
Reproduction rights dbtainable fram
www. CartoonStock.com? \\

2|

© Mice

Eatowin s Comered
<-.,

“Heads | do, tails I'm outta here.”

© CSE Al faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Course Overview: Where are we?

e Introduction & Agents

e Search and Heuristics

e Adversarial Search

e Logical Knowledge Representation
e Markov Decision Processes (MDPs)
e Reinforcement Learning

e Uncertainty & Bayesian Networks
e Machine Learning

MDPs

Markov Decision Processes
e Planning Under Uncertainty

e Mathematical Framework
e Bellman Equation

e Value Iteration

e Policy Iteration

Andrey Markov
e Reinforcement Learning (1856-1922)

Fully
VS.
Partially
Observable

Planning Agent

Static vs. Dynamic

What action
next?

Percepts £ R
>

Actions

Deterministic
VS.
Stochastic

Review: Expectimax

= What if we don’t know what the result of an
action will be? E.g.,
e |n Solitaire, next card is unknown

e |In Pacman, the ghosts act randomly MAX

= Can do expectimax search
= Max nodes as in minimax search
= Chance nodes, like min nodes, 5
except the outcome is uncertain - 1/6
take average (expectation) of
children
= Calculate expected utilities 20 [2 6 A

2
Chance

= Today, we formalize this as a Markov Decision Process
= Handles intermediate rewards & infinite search trees
= More efficient processing

Example: Grid World

= Walls block the agent’s path
= Agent’s actions are noisy:

= 80% of the time, North action
takes the agent North
(assuming no wall)

= 10% - actually go West
= 10% - actually go East

= |fthereis a wall in the chosen
direction, the agent stays put

= Small “living” penalty (e.g., -0.04)
each step

* Big reward/penalty (e.g., +1 or-1)
comes at the end

" Goal: maximize sum of rewards

3

START

+1

Markov Decision Processes

= An MDP is defined by:
o Asetofstatess €S
e Asetofactionsae A
e A transition function T(s,a,s’)

e Probability that action ain
sleadsto s’

i.e., P(s’ | s,a)
e Also called “the model”
e Areward function R(s, a, s’)
e Sometimes just R(s) or R(s’)
e A start state
e Maybe a terminal state

+1

1 START

0.8

0.1 0.1

What is Markov about MDPs?

= “Markov” generally means that

e Given the present state, the future is
independent of the past

= For Markov decision processes, Andrey Markov
“Markov” means: (1856-1922)

P(St—l—l = 8'|St = st, Ay = a4, St—1 = s¢—1, Ai—1,...S0 = 80)

Next state only depends on

P — g’ — A — 1
(St1 = 8|S = 81, A = @) current state and action

Solving MDPs

" |n deterministic search problems, want an optimal path or plan
(sequence of actions) from start to a goal

= MDP: Stochastic actions, don’t know what next state will be
= |nstead of path/plan, use an optimal policy t*: S > A

e Policy m prescribes an action for every state

e Defines a reflex agent

e An optimal policy maximizes expected reward if followed

Solving MDPs

Optimal policy? 3
Assume R(s, a, s’) =-0.04 2 [=T]
for all non-terminal s 1| start
1 2 4
3| =] - 1]
2 | .
1 ' —-— ——

S o

o © N
1 O

n "G]

OO L

= = z v = o

2 o = >

._qlm o ‘N]
[(Vs

> Q 1]

2 O =
@) o <

More Example Optimal Policies

Another Example:
High-Low Card Game

Example: High-Low

= Suppose three card types: 2, 3, 4

e Infinite deck, twice as many 2’s
= Start with 3 showing
= After each card, say “high” or “low”
= New card is revealed

e |f you're right, you win the points
shown on the new card

e Tie: no reward, choose again
e |f you're wrong, game ends

= Differences from expectimax problems:
= #1: get rewards as you go
= #2:vyou might play forever!

High-Low as an MDP

= States:
e 2,3,4,done

= Actions:
e High, Low

= Model: T(s, a,s’) =P(s’ | s, a):
e P(s’=4 | 4, Low)=1/4
e P(s’=3| 4, Low)=1/4
e P(s’=2 | 4, Low) =1/2
e P(s’=done | 4, Low) =0
e P(s’=4 | 4, High) =1/4
e P(s’=3 | 4, High)=0
e P(s’=2 | 4, High)=0

e P(s’=done | 4, High) =3/4

 Rewards: R(s, a, s’):
e Number shownons’if s'>s
A a=“High” etc.
* 0 otherwise
e Start: 3

Expectimax-like Search Tree for High-Low

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

State
< “a
(s,a)isa ol
Q-state ’ r__’ (s,a,5”) is called a
~ transition
B T(s,a,8") = P(s’[s,a)

Reward = R(s,a,5’)

Utilities of Reward Sequences

= What is an “optimal” policy?
e Each transition s,a,s’ produces a reward (+ve, -ve, or 0)
e Need to define utility of a sequence of rewards

= |dea l:
= Additive utility:

U([To,?“]_,’I“Q,...]) =ro+r1+ro+---

Defining Utilities

= Problem: Infinite state sequences have
infinite total reward

= Solutions:

* Impose a Finite Horizon (deadline):
e Terminate episodes after a fixed T steps (e.g. life)
e Gives nonstationary policies (t depends on time left)

e Absorbing state: guarantee that a terminal state will
eventually be reached (like “done” for High-Low)

e Discounting: Make infinite sum finite usingy (0 <y<1)

U([rg,r1,72,...]) =rg+yr1 + 72,,42 e

U([ro, .- -roo]) = Z ’Yt’rt < Rmax/(1 —7)
t=0

Discounting Rewards

U(lro,...Toc]) = > ~try < Rmax/(1 —7)

t=0 — B
= Discount rewards by 1 <)
y < 1 each time step Y
e Sooner rewards have ~ .

higher utility than)
later rewards v

e Also helps the)
algorithms converge T

Next Time

= Using utility to find the optimal policy
" Todo
e Read chapters 13 and 17

20

