
CSE 473

Lecture 15

Markov Decision Processes (MDPs)

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Course Overview: Where are we?

• Introduction & Agents

• Search and Heuristics

• Adversarial Search

• Logical Knowledge Representation

• Markov Decision Processes (MDPs)

• Reinforcement Learning

• Uncertainty & Bayesian Networks

• Machine Learning

MDPs

 Markov Decision Processes

• Planning Under Uncertainty

• Mathematical Framework

• Bellman Equation

• Value Iteration

• Policy Iteration

• Reinforcement Learning
Andrey Markov

(1856-1922)

Planning Agent

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Fully

vs.

 Partially

Observable

Deterministic
vs.

 Stochastic

Review: Expectimax
 What if we don’t know what the result of an

action will be? E.g.,
• In Solitaire, next card is unknown
• In Pacman, the ghosts act randomly

 Today, we formalize this as a Markov Decision Process

 Handles intermediate rewards & infinite search trees
 More efficient processing

 Can do expectimax search
 Max nodes as in minimax search
 Chance nodes, like min nodes,

except the outcome is uncertain -
take average (expectation) of
children

 Calculate expected utilities 20 2 6 4

MAX

Chance
5 5.6

1/6 5/6 4/5 1/5

A1
A2

Example: Grid World

 Walls block the agent’s path

 Agent’s actions are noisy:

 80% of the time, North action
takes the agent North
(assuming no wall)

 10% - actually go West

 10% - actually go East

 If there is a wall in the chosen
direction, the agent stays put

 Small “living” penalty (e.g., -0.04)
each step

 Big reward/penalty (e.g., +1 or - 1)
comes at the end

 Goal: maximize sum of rewards

Markov Decision Processes

 An MDP is defined by:
• A set of states s S
• A set of actions a A
• A transition function T(s,a,s’)

• Probability that action a in
s leads to s’
i.e., P(s’ | s,a)

• Also called “the model”
• A reward function R(s, a, s’)

• Sometimes just R(s) or R(s’)
• A start state
• Maybe a terminal state

What is Markov about MDPs?

 “Markov” generally means that
• Given the present state, the future is

independent of the past

 For Markov decision processes,

“Markov” means:

Next state only depends on

current state and action

Andrey Markov
(1856-1922)

Solving MDPs

 Instead of path/plan, use an optimal policy *: S → A

• Policy prescribes an action for every state

• Defines a reflex agent

• An optimal policy maximizes expected reward if followed

 In deterministic search problems, want an optimal path or plan
(sequence of actions) from start to a goal

 MDP: Stochastic actions, don’t know what next state will be

Solving MDPs

Optimal policy?

 Assume R(s, a, s’) = -0.04

for all non-terminal s

More Example Optimal Policies

R(s) = -2.0 R(s) = -0.4

R(s) = -0.04 R(s) = -0.01

Conservative

Aggressive Suicidal

Another Example:

High-Low Card Game

Example: High-Low

 Suppose three card types: 2, 3, 4
• Infinite deck, twice as many 2’s

 Start with 3 showing
 After each card, say “high” or “low”
 New card is revealed

• If you’re right, you win the points
shown on the new card

• Tie: no reward, choose again
• If you’re wrong, game ends

3

 Differences from expectimax problems:
 #1: get rewards as you go
 #2: you might play forever!

High-Low as an MDP
 States:

• 2, 3, 4, done
 Actions:

• High, Low
 Model: T(s, a, s’) = P(s’ | s, a):

• P(s’=4 | 4, Low) = 1/4
• P(s’=3 | 4, Low) = 1/4
• P(s’=2 | 4, Low) = 1/2
• P(s’=done | 4, Low) = 0
• P(s’=4 | 4, High) = 1/4
• P(s’=3 | 4, High) = 0
• P(s’=2 | 4, High) = 0
• P(s’=done | 4, High) = 3/4
• …

3

• Rewards: R(s, a, s’):
• Number shown on s’ if s’> s

 a=“High” etc.
• 0 otherwise

• Start: 3

Expectimax-like Search Tree for High-Low

Low High

High Low High Low

, Low , High

T = 0.5,

R = 2

T = 0.25,

R = 0

T = 0,

R = 0

T = 0.25,

R = 0

done

MDP Search Trees

 Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) is called a

transition

T(s,a,s’) = P(s’|s,a)

Reward = R(s,a,s’)

s,a,s’

s is a

state

(s, a) is a

“Q-state”

Utilities of Reward Sequences

 What is an “optimal” policy?

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0)

• Need to define utility of a sequence of rewards

 Idea 1:
 Additive utility:

Defining Utilities

 Problem: Infinite state sequences have

 infinite total reward

 Solutions:

• Impose a Finite Horizon (deadline):

• Terminate episodes after a fixed T steps (e.g. life)

• Gives nonstationary policies (depends on time left)

• Absorbing state: guarantee that a terminal state will
eventually be reached (like “done” for High-Low)

• Discounting: Make infinite sum finite using (0 < < 1)

3

Discounting Rewards

 Discount rewards by
 < 1 each time step

• Sooner rewards have
higher utility than
later rewards

• Also helps the
algorithms converge

1

2

Next Time

 Using utility to find the optimal policy

 To do

• Read chapters 13 and 17

20

