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Reasoning with First-Order Logic 

© CSE AI faculty 

Chaining  Resolution Compilation to SAT 



• What if we want to use modus ponens? 
Propositional Logic: 
a  b,     a  b  c 
         c 

 

• In First-Order Logic? 
    x Monkey(x)  Curious(x) 

Monkey(George) 
???? 

• Must “unify” x with George:  
Need to substitute {x/George} in Monkey(x)  Curious(x) to 

infer Curious(George) 
 

FOL Reasoning: Motivation 



What is Unification? 

Not this kind of unification… 
 



What is Unification? 
• Match up expressions by finding variable 

values that make the expressions identical 
  
 Unify city(x) and city(seattle) using {x/seattle} 

 

• Unify(a, b) returns most general unifier (MGU) 
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Most General Unifier 

• Unify(a, b) returns most general unifier (MGU)  

• MGU places fewest restrictions on values of variables  

• Examples: 

 Unify(city(x), city(seattle)) returns  {x/seattle} 

 Unify(PokesInTheEyes(Moe,x), PokesInTheEyes(y,z))  

 returns {y/Moe,z/x}  

{y/Moe,x/Moe,z/Moe} also possible but not MGU 



Unification and Substitution 

• Unification produces a mapping from 
variables to values (e.g., {x/seattle,y/tacoma}) 

• Substitution: Subst(mapping,sentence) 
returns new sentence with variables 
replaced by values 

 Subst({x/seattle,y/tacoma}),connected(x, y)),  

  returns connected(seattle, tacoma) 
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Unification Examples I 

• Unify(road(x, kent), road(seattle, y)) 
 Returns {x / seattle,   y / kent} 
 When substituted in both expressions, the 

resulting expressions match: 
 Each is   (road(seattle, kent)) 

 

• Unify(road(x, x), road(seattle, kent)) 
 Not possible – Fails!  
 x can’t be seattle and kent at the same time! 
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Unification Examples II 

• Unify(f(g(x, dog), y)), f(g(cat, y), dog) 
 { x / cat,  y / dog} 

• Unify(f(g(x)), f(x)) 
 Fails: no substitution makes them identical. 
 E.g.  {x / g(x) } yields f(g(g(x)))  and f(g(x))  

which are not identical! 

• Thus: A variable may not contain itself in 
a substitution 
 Directly or indirectly 
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Unification Examples III 

• Unify(f(g(cat, y), y), f(x, dog)) 
 { x / g(cat, dog),  y / dog} 

• Unify(f(g(y)), f(x)) 
 {x / g(y)} 

 
• Back to curious monkeys: 

 
 
 
 

 Unify and then use modus ponens = 
  generalized modus ponens (GMP) 
  (“Lifted”  version of modus ponens) 

 

Monkey(x)  Curious(x) 
Monkey(George) 
Curious(George) 

{x / George} 
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Inference I: Forward Chaining  

• The algorithm: 
 Start with the KB 
 Add any fact you can generate with GMP (i.e., 

  unify expressions and use modus ponens) 
 Repeat until: goal reached or generation halts 

 



Example 
• It is a crime for an American to sell weapons to hostile 

nations.  The country Nono, an enemy of America, has 
some missiles. All of its missiles were sold to it by Colonel 
West, who is American. 

 

• Is Col. West a criminal? 
 

• KB of definite clauses (exactly 1 positive literal): 
 

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x) 

Owns(Nono,M1)  
Missile(M1) 
Enemy(Nono,America) 

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono) 
American(West) 

Missile(x)  Weapon(x) 
Enemy(x,America)  Hostile(x) 
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{Skolem constant} 



Forward chaining example 

Initial facts in KB 

Missile(x)  Weapon(x) 
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono) 
Enemy(x,America)  Hostile(x) 

 
 



Forward chaining example 

Facts inferred after 1st iteration 

{x/M1} {x/M1} {x/Nono} 

Missile(x)  Weapon(x) 
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono) 
Enemy(x,America)  Hostile(x) 

 
 

1 
2 
3 

1 3 2 



Forward chaining example 

Facts inferred after 1st iteration 

{x/M1} {x/M1} {x/Nono} 

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x) 



Forward chaining example 

{x/West. y/M1, z/Nono} 

Col. West is a criminal 
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Inference I: Forward Chaining  
 

• Sound? Complete? Decidable? 
 

• Speed concerns? Inefficiencies due to: 
 Unification via exhaustive pattern matching; premise 

rechecking on every iteration; irrelevant fact generation. 
 (see Section 9.3.3 for strategies to increase speed) 

Yes; yes for definite KB; no (see p. 331 in text) 
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Inference II: Backward Chaining  

• The algorithm: 
 Start with KB and goal. 
 Find all rules whose results unify with goal: 

Add the premises of these rules to the goal list 
Remove the corresponding result from the goal list 

 Stop when: 
Goal list is empty (SUCCEED) or 
Progress halts (FAIL) 

 



Backward chaining example 

Goal 



Backward chaining example 
American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x) 

KB has: 
American(West) 



Backward chaining example 

KB has: 
Missile(y)  Weapon(y) 
Missile(M1) 

Depth-first traversal 

New Subgoal 



Backward chaining example 

KB has: 
Missile(y)  Owns(Nono,y)  Sells(West,y,Nono) 
Missile(M1) 
Owns(Nono,M1) 
 

New Subgoal 

{z/?} 



Backward chaining example 

New Subgoal 

KB has: 
Enemy(z,America)  Hostile(z) 
Enemy(Nono,America) 
 



Backward chaining example 



Properties of backward chaining 

• Depth-first recursive search: space is linear in 
size of proof 

• Incomplete due to infinite loops (e.g. repeated states) 

  fix by checking current goal against goals on stack 
  Can’t fix infinite paths though (similar to DFS) 

• Inefficient due to repeated computations 
  fix using caching of previous results (extra space) 

• Widely used for logic programming 
 E.g., Prolog (logic programming language) – see 

Section 9.4 in text 
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Inference III: Resolution 
 

 
  { (p  q), ( p  r  s) }  |─ R  (q  r  s) 

Recall Propositional Case:  
•Literal in one clause 
•Its negation in the other 
•Result is disjunction of other literals 

} 
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First-Order Resolution 
[Robinson 1965] 

  { (p(x)  q(A),   ( p(B)  r(x)  s(y)) }   
 
                      |─ R  
 
                  (q(A)  r(B)  s(y)) 

• Literal in one clause 
• Negation of something which unifies in other 
• Result is disjunction of all other literals with 
 substitution based on MGU 

Substitute 
MGU {x/B} 
in all 
literals 
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Inference using First-Order 
Resolution 

• As before, use “proof by contradiction” 
 To show KB╞ α, show KB  α unsatisfiable 

 
• Method 

 Let S = KB  goal 
 Convert S to clausal form 

• Standardize variables (replace x in all with y, z, x1, …) 
• Move quantifiers to front, skolemize to remove   
• Replace  with  and  
• Use deMorgan’s laws to get CNF (ands-of-ors) 

 Resolve clauses in S until empty clause 
(unsatisfiable) or no new clauses added 



Next Time 

• Wrap up of FOL 
• FOL Wumpus Agent 
• To Do 

 Project #2 due this Saturday NOON 
 Read chapter 9 
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