
CSE 473
Lecture 13
Chapter 9

Reasoning with First-Order Logic

© CSE AI faculty

Chaining Resolution Compilation to SAT

• What if we want to use modus ponens?
Propositional Logic:
a  b, a  b  c
 c

• In First-Order Logic?
 x Monkey(x)  Curious(x)

Monkey(George)
????

• Must “unify” x with George:
Need to substitute {x/George} in Monkey(x)  Curious(x) to

infer Curious(George)

FOL Reasoning: Motivation

What is Unification?

Not this kind of unification…

What is Unification?
• Match up expressions by finding variable

values that make the expressions identical

 Unify city(x) and city(seattle) using {x/seattle}

• Unify(a, b) returns most general unifier (MGU)

5

Most General Unifier

• Unify(a, b) returns most general unifier (MGU)

• MGU places fewest restrictions on values of variables

• Examples:

 Unify(city(x), city(seattle)) returns {x/seattle}

 Unify(PokesInTheEyes(Moe,x), PokesInTheEyes(y,z))

 returns {y/Moe,z/x}

{y/Moe,x/Moe,z/Moe} also possible but not MGU

Unification and Substitution

• Unification produces a mapping from
variables to values (e.g., {x/seattle,y/tacoma})

• Substitution: Subst(mapping,sentence)
returns new sentence with variables
replaced by values

 Subst({x/seattle,y/tacoma}),connected(x, y)),

 returns connected(seattle, tacoma)

7

Unification Examples I

• Unify(road(x, kent), road(seattle, y))
 Returns {x / seattle, y / kent}
 When substituted in both expressions, the

resulting expressions match:
 Each is (road(seattle, kent))

• Unify(road(x, x), road(seattle, kent))
 Not possible – Fails!
 x can’t be seattle and kent at the same time!

8

Unification Examples II

• Unify(f(g(x, dog), y)), f(g(cat, y), dog)
 { x / cat, y / dog}

• Unify(f(g(x)), f(x))
 Fails: no substitution makes them identical.
 E.g. {x / g(x) } yields f(g(g(x))) and f(g(x))

which are not identical!

• Thus: A variable may not contain itself in
a substitution
 Directly or indirectly

9

Unification Examples III

• Unify(f(g(cat, y), y), f(x, dog))
 { x / g(cat, dog), y / dog}

• Unify(f(g(y)), f(x))
 {x / g(y)}

• Back to curious monkeys:

 Unify and then use modus ponens =
 generalized modus ponens (GMP)
 (“Lifted” version of modus ponens)

Monkey(x)  Curious(x)
Monkey(George)
Curious(George)

{x / George}

10

Inference I: Forward Chaining

• The algorithm:
 Start with the KB
 Add any fact you can generate with GMP (i.e.,

 unify expressions and use modus ponens)
 Repeat until: goal reached or generation halts

Example
• It is a crime for an American to sell weapons to hostile

nations. The country Nono, an enemy of America, has
some missiles. All of its missiles were sold to it by Colonel
West, who is American.

• Is Col. West a criminal?

• KB of definite clauses (exactly 1 positive literal):

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)
Missile(M1)
Enemy(Nono,America)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)
American(West)

Missile(x)  Weapon(x)
Enemy(x,America)  Hostile(x)

11

{Skolem constant}

Forward chaining example

Initial facts in KB

Missile(x)  Weapon(x)
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)
Enemy(x,America)  Hostile(x)

Forward chaining example

Facts inferred after 1st iteration

{x/M1} {x/M1} {x/Nono}

Missile(x)  Weapon(x)
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)
Enemy(x,America)  Hostile(x)

1
2
3

1 3 2

Forward chaining example

Facts inferred after 1st iteration

{x/M1} {x/M1} {x/Nono}

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Forward chaining example

{x/West. y/M1, z/Nono}

Col. West is a criminal

16

Inference I: Forward Chaining

• Sound? Complete? Decidable?

• Speed concerns? Inefficiencies due to:
 Unification via exhaustive pattern matching; premise

rechecking on every iteration; irrelevant fact generation.
 (see Section 9.3.3 for strategies to increase speed)

Yes; yes for definite KB; no (see p. 331 in text)

17

Inference II: Backward Chaining

• The algorithm:
 Start with KB and goal.
 Find all rules whose results unify with goal:

Add the premises of these rules to the goal list
Remove the corresponding result from the goal list

 Stop when:
Goal list is empty (SUCCEED) or
Progress halts (FAIL)

Backward chaining example

Goal

Backward chaining example
American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

KB has:
American(West)

Backward chaining example

KB has:
Missile(y)  Weapon(y)
Missile(M1)

Depth-first traversal

New Subgoal

Backward chaining example

KB has:
Missile(y)  Owns(Nono,y)  Sells(West,y,Nono)
Missile(M1)
Owns(Nono,M1)

New Subgoal

{z/?}

Backward chaining example

New Subgoal

KB has:
Enemy(z,America)  Hostile(z)
Enemy(Nono,America)

Backward chaining example

Properties of backward chaining

• Depth-first recursive search: space is linear in
size of proof

• Incomplete due to infinite loops (e.g. repeated states)

  fix by checking current goal against goals on stack
  Can’t fix infinite paths though (similar to DFS)

• Inefficient due to repeated computations
  fix using caching of previous results (extra space)

• Widely used for logic programming
 E.g., Prolog (logic programming language) – see

Section 9.4 in text

25

Inference III: Resolution

 { (p  q), ( p  r  s) } |─ R (q  r  s)

Recall Propositional Case:
•Literal in one clause
•Its negation in the other
•Result is disjunction of other literals

}

26

First-Order Resolution
[Robinson 1965]

 { (p(x)  q(A), ( p(B)  r(x)  s(y)) }

 |─ R

 (q(A)  r(B)  s(y))

• Literal in one clause
• Negation of something which unifies in other
• Result is disjunction of all other literals with
 substitution based on MGU

Substitute
MGU {x/B}
in all
literals

27

Inference using First-Order
Resolution

• As before, use “proof by contradiction”
 To show KB╞ α, show KB  α unsatisfiable

• Method

 Let S = KB  goal
 Convert S to clausal form

• Standardize variables (replace x in all with y, z, x1, …)
• Move quantifiers to front, skolemize to remove 
• Replace  with  and 
• Use deMorgan’s laws to get CNF (ands-of-ors)

 Resolve clauses in S until empty clause
(unsatisfiable) or no new clauses added

Next Time

• Wrap up of FOL
• FOL Wumpus Agent
• To Do

 Project #2 due this Saturday NOON
 Read chapter 9

28

