CSE 473

Lecture 13
Chapter 9

Reasoning with First-Order Logic

Chaining

Resolution

Compilation to SAT

FOL Reasoning: Motivation

- What if we want to use modus ponens? Propositional Logic:
$\frac{a \wedge b, \quad a \wedge b \Rightarrow c}{c}$
- In First-Order Logic?
$\forall x$ Monkey $(x) \Rightarrow$ Curious(x)
Monkey(George)
????
- Must "unify" x with George:

Need to substitute $\{x /$ George $\}$ in Monkey $(x) \Rightarrow$ Curious (x) to infer Curious(George)

What is Unification?

 BERLIN WALL TUMBLES

Not this kind of unification...

What is Unification?

- Match up expressions by finding variable values that make the expressions identical

Unify city (x) and city(seattle) using $\{x /$ seattle $\}$

- Unify (a, b) returns most general unifier (MGU)

Most General Unifier

- Unify (a, b) returns most general unifier (MGU)
- MGU places fewest restrictions on values of variables
- Examples:

Unify (city (x), city(seattle)) returns $\{x /$ seattle $\}$ Unify(PokesInTheEyes(Moe, x), PokesInTheEyes(y, z)) returns $\{y /$ Moe, $z / x\}$
$\{y /$ Moe, $x /$ Moe, $z /$ Moe $\}$ also possible but not MGU

Unification and Substitution

- Unification produces a mapping from variables to values (e.g., \{ $\{\times /$ seattle,y/tacoma\})
- Substitution: Subst(mapping,sentence) returns new sentence with variables replaced by values

Subst(\{x/seattle,y/tacoma\}),connected(x,y)), returns connected(seattle, tacoma)

Unification Examples I

- Unify(road(x, kent), road(seattle, y))

Returns \{x/seattle, y/kent\}
When substituted in both expressions, the resulting expressions match:
Each is (road(seattle, kent))

- Unify(road (x, x), road(seattle, kent))

Not possible - Fails!
x can't be seattle and kent at the same time!

Unification Examples II

- Unify(f(g(x, dog), y)), f(g(cat, y), dog) \{ $x /$ cat, $y / d o g\}$
- Unify $(f(g(x)), f(x))$

Fails: no substitution makes them identical. E.g. $\{x / g(x)\}$ yields $f(g(g(x)))$ and $f(g(x))$ which are not identical!

- Thus: A variable may not contain itself in a substitution

Directly or indirectly

Unification Examples III

- Unify $(f(g(c a t, y), y), f(x, d o g))$
$\{x / g(c a t, d o g), y / d o g\}$
- Unify(f(g(y)), f(x))
$\{x / g(y)\}$
- Back to curious monkeys:

Monkey $(x) \rightarrow$ Curious (x)
Monkey(George)
Curious(George)
Unify and then use modus ponens =
generalized modus ponens (GMP)
("Lifted" version of modus ponens)

Inference I: Forward Chaining

The algorithm:

Start with the KB
Add any fact you can generate with GMP (i.e., unify expressions and use modus ponens) Repeat until: goal reached or generation halts

Example

- It is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles. All of its missiles were sold to it by Colonel West, who is American.
- Is Col. West a criminal?
- KB of definite clauses (exactly 1 positive literal):

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow$ Criminal (x)
Owns(Nono, M_{1}) \{Skolem constant\} Missile (M_{1})
Enemy(Nono,America)
Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West, x,Nono) American(West)
Missile $(x) \Rightarrow$ Weapon (x)
Enemy $(x$, America) $\Rightarrow \operatorname{Hostile}(x)$

Forward chaining example

```
Missile \((x) \Rightarrow\) Weapon \((x)\)
Missile \((x)\) ^ Owns(Nono, \(x) \Rightarrow\) Sells(West, \(x\), Nono)
Enemy \((x\), America) \(\Rightarrow\) Hostile \((x)\)
```

Initial facts in KB

Forward chaining example

$1 \operatorname{Missile}(x) \Rightarrow$ Weapon (x)
2 Missile $(x) \wedge$ Owns(Nono, $x) \Rightarrow$ Sells(West, x, Nono)
3 Enemy(x, America) \Rightarrow Hostile (x)

Facts inferred after $1^{\text {st }}$ iteration

Forward chaining example

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$

Facts inferred after $1^{\text {st }}$ iteration

Forward chaining example

Col. West is a criminal

Inference I: Forward Chaining

- Sound? Complete? Decidable?

Yes; yes for definite KB; no (see p. 331 in text)

- Speed concerns? Inefficiencies due to:

Unification via exhaustive pattern matching; premise rechecking on every iteration; irrelevant fact generation. (see Section 9.3.3 for strategies to increase speed)

Inference II: Backward Chaining

- The algorithm:

Start with KB and goal.
Find all rules whose results unify with goal:
Add the premises of these rules to the goal list Remove the corresponding result from the goal list
Stop when:
Goal list is empty (SUCCEED) or Progress halts (FAIL)

Backward chaining example

Goal
Criminal(West)

Backward chaining example

$\operatorname{American}(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$

Backward chaining example

Depth-first traversal

$K B$ has:
Missile $(y) \Rightarrow$ Weapon(y)
Missile $\left(M_{1}\right)$

Backward chaining example

New Subgoal
\{z/?\}

KB has:
Missile(y) ^ Owns(Nono, y) \Rightarrow Sells(West, y, Nono) Missile(M_{1})
Owns(Nono, M_{1})

Backward chaining example

Backward chaining example

Properties of backward chaining

- Depth-first recursive search: space is linear in size of proof
- Incomplete due to infinite loops (e.g. repeated states)
\Rightarrow fix by checking current goal against goals on stack \Rightarrow Can't fix infinite paths though (similar to DFS)
- Inefficient due to repeated computations
\Rightarrow fix using caching of previous results (extra space)
- Widely used for logic programming
E.g., Prolog (logic programming language) - see Section 9.4 in text

Inference III: Resolution

$\{(p \vee q),(\neg p \vee r \vee s)\}\left|\left.\right|_{R}(q \vee r \vee s)\right.$
Recall Propositional Case:

- Literal in one clause
- Its negation in the other -Result is disjunction of other literals

First-Order Resolution [Robinson 1965]

$\{(p(x) \vee q(A), \quad(\neg p(B) \vee r(x) \vee s(y))\}$

$$
\left\{\begin{array}{c}
1-{ }_{R} \\
(q(A) \vee r(B) \vee s(y))
\end{array}\right.
$$

Substitute MGU $\{x / B\}$ in all
literals

- Literal in one clause
- Negation of something which unifies in other
- Result is disjunction of all other literals with substitution based on MGU

Inference using First-Order Resolution

- As before, use "proof by contradiction" To show $K B \neq a$, show $K B \wedge \neg a$ unsatisfiable
- Method

Let $S=K B \wedge \neg$ goal
Convert S to clausal form

- Standardize variables (replace x in all with y, z, x_{1}, \ldots)
- Move quantifiers to front, skolemize to remove \exists
- Replace \Rightarrow with \vee and \neg
- Use deMorgan's laws to get CNF (ands-of-ors)

Resolve clauses in S until empty clause
(unsatisfiable) or no new clauses added

Next Time

- Wrap up of FOL
- FOL Wumpus Agent
- To Do

Project \#2 due this Saturday NOON Read chapter 9

