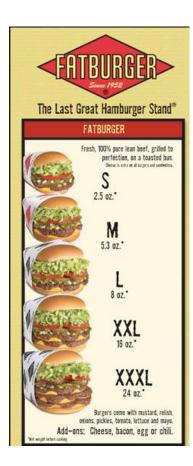


Lecture 12 Chapter 8

First-Order Logic

What's on our menu today?

- First-Order Logic
 - Definitions
 - Universal and Existential Quantifiers
 - Skolemization
 - Unification



Propositional vs. First-Order

Propositional logic: Deals with facts and propositions (can be true or false):

P_{1,1} "there is a pit in (1,1)"
George_Monkey "George is a monkey"
George_Curious "George is curious"
473student1_Monkey
(George_Monkey ∧ ¬473student1_Monkey) ∨ ...

Propositional vs. First-Order First-order logic: Deals with objects and relations Objects: George, 473Student1, Miley, Raj, ... Relations: Monkey(George), Curious(George), CanTwerk(Miley), WillNotTwerk(Raj) Smarter(473Student1, Monkey2) Smarter(Monkey2, Raj) Stooges(Larry, Moe, Curly) PokesInTheEyes(Moe, Curly) PokesInTheEyes(473Student1, Raj)

FOL Definitions

Constants: Name a specific object. George, Monkey2, Larry, ... Variables: Refer to an object without naming it. X, Y, ... Relations (predicates): Properties of or relationships between objects. Curious, CanTwerk, PokesInTheEyes, ...

FOL Definitions

Functions: Mapping from objects to objects. banana-of, grade-of, bad-song-of Terms: Logical expressions referring to objects banana-of(George) grade-of(stdnt1) bad-song-of(JayZ) bad-song-of(Raj)

More Definitions

Logical connectives: and, or, not, \Rightarrow , \Leftrightarrow Quantifiers:

- ∀ For all
- $\cdot \exists$ There exists

(Universal quantifier) (Existential quantifier)

Examples

- All monkeys are curious
 ∀x: Monkey(x) ⇒ Curious(x)
- There is a curious monkey

 $\exists x: Monkey(x) \land Curious(x)$

Quantifier / Connective Interaction

 $\forall x: M(x) \land C(x)$

"Everything is a curious monkey"

 $\forall x \colon M(x) \Rightarrow C(x)$

"All monkeys are curious"

 $\exists x: M(x) \land C(x)$

"There exists a curious monkey"

 $\exists x \colon M(x) \Rightarrow C(x)$

"There exists an object that is *either* a curious monkey, *or* not a monkey at all"

Nested Quantifiers: Order matters!

 $\forall x \exists y P(x,y) \neq \exists y \forall x P(x,y)$

Every monkey has a tail

 $\forall m \exists t has(m,t)$

Every monkey *shares* a tail!

$$\exists t \forall m has(m, t)$$

Try:

Everybody loves somebody vs. Someone is loved by everyone $\forall x \exists y \ | oves(x, y) \qquad \exists y \forall x \ | oves(x, y)$

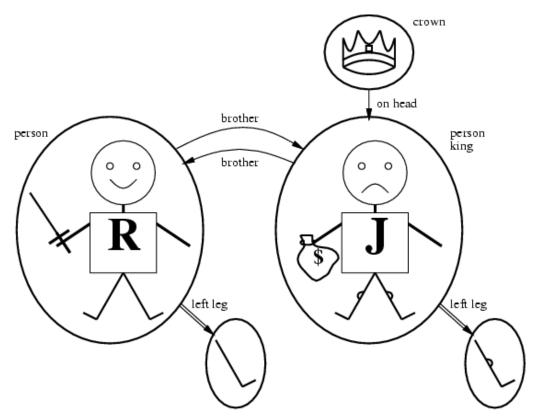
Semantics

Semantics = what the arrangement of symbols means in the world

Propositional logic

- Basic elements are propositional variables e.g., $P_{1,1}$ (refer to facts about the world)
- Possible worlds: mappings from variables to T/F
- First-order logic
 - Basic elements are terms, e.g., George, bananaof(George), bad-song-of(dad-of(Miley)) (logical expressions that refer to objects)
 - Interpretations: mappings from terms to realworld elements

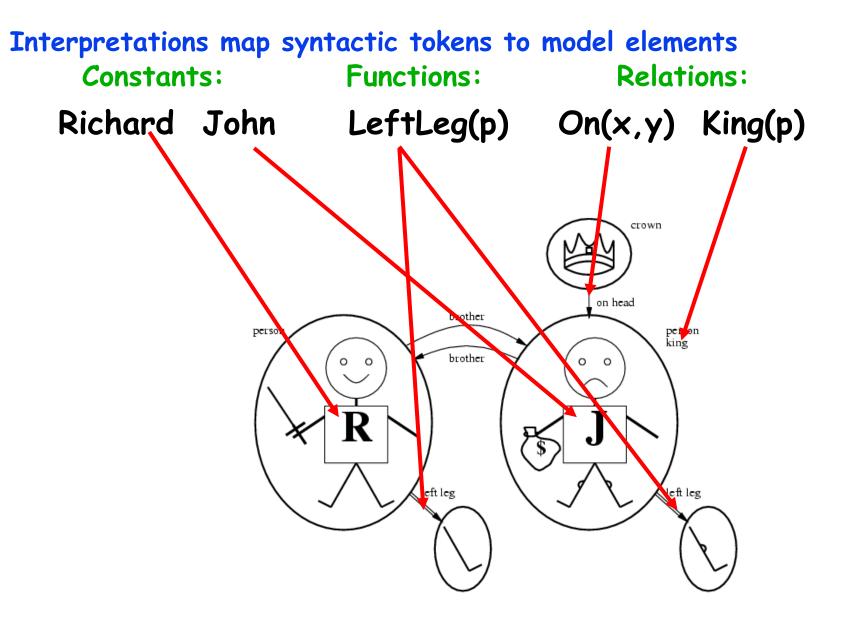
Example: A World of Kings and Legs



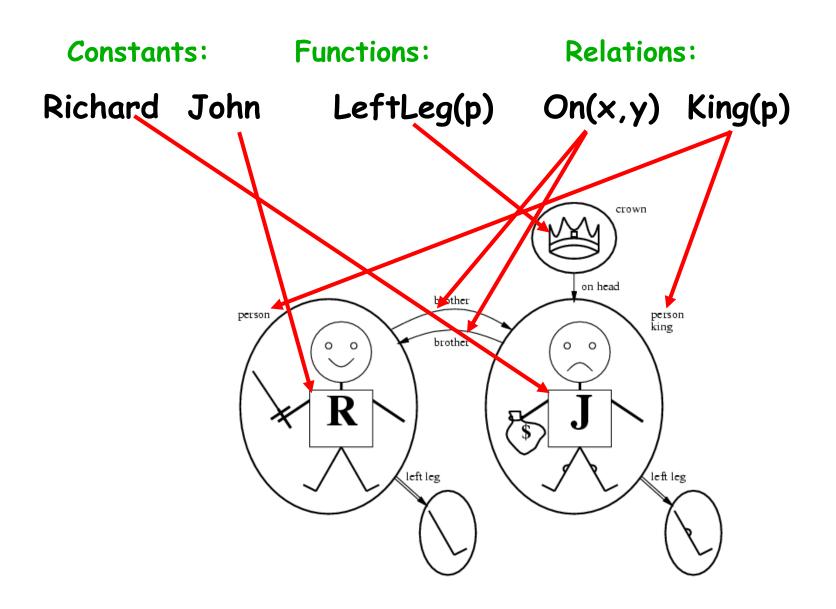
Syntactic elements:

Constants:Functions:Relations:Richard JohnLeftLeg(p)On(x,y)King(p)

Interpretation I



Interpretation II



How Many Interpretations?

Two constants (and 5 objects in world): **# possible mappings?**

• Richard, John (objects: R, J, crown, RL, JL)

 $5^2 = 25$ object mappings

One unary relation

King(x) *Infinite* number of values for $x \rightarrow$ infinite mappings If we restricted x to R, J, crown, RL, JL:

 $2^5 = 32$ unary truth mappings

Two binary relations

Leg(x, y); On(x, y)

Infinite. If we restrict x, y to five objects each? Still yields 2²⁵ mappings *for each* binary relation

Satisfiability, Validity, & Entailment

- S is valid if it is true in all interpretations
- S is satisfiable if it is true in some interp
- S is unsatisfiable if it is false in all interps
- S1 = S2 (S1 entails S2) if for all interps where S1 is true, S2 is also true

Propositional. Logic vs. First Order

Ontology	Facts (P, Q,)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables & quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	WalkSAT, DPLL Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving
Complexity	NP-Complete	Semi-decidable May run forever if KB ≱α

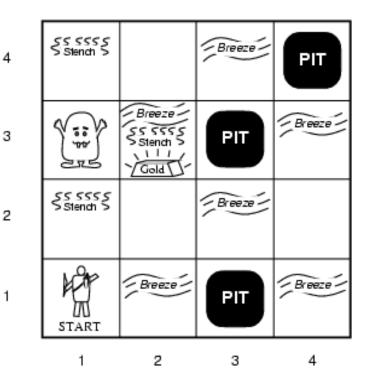
First-Order Wumpus World

Objects

- Squares, wumpuses, agents,
- gold, pits, stinkiness, breezes

Relations

- Square topology (adjacency),
- Pits/breezes,
- Wumpus/stinkiness



Wumpus World: Squares

```
    Each square as an object:

        Square<sub>11</sub>, Square<sub>12</sub>, ...,
        Square<sub>3,4</sub>, Square<sub>4,4</sub>

    Square topology relations?

       Adjacent(Square_{1,1}, Square_{2,1})
       Adjacent(Square_{34}, Square_{44})
Better: Squares as lists:
        [1, 1], [1,2], ..., [4, 4]
Square topology relations:
        ∀x, y, a, b: Adjacent([x, y], [a, b]) ⇔
                 [a, b] \in \{[x+1, y], [x-1, y], [x, y+1], [x, y-1]\}
```

Wumpus World: Pits

```
•Each pit as an object:
       Pit<sub>11</sub>, Pit<sub>12</sub>, ...,
        Pit_{3,4}, Pit_{4,4}

    Problem?

            Not all squares have pits
List only the pits we have?
           Pit_{3,1}, Pit_{3,3}, Pit_{4,4}
Problem?
            No reason to distinguish pits (same properties)
Better: pit as unary predicate
            Pit(x)
            Pit([3,1]), Pit([3,3]), Pit([4,4]) will be true
```

Wumpus World: Breezes

 Represent breezes like pits, as unary predicates: Breezy(x)

"Squares next to pits are breezy":

∀a, b, c, d:
Pit([a, b]) ∧ Adjacent([a, b], [c, d]) ⇒ Breezy([c, d])

Wumpus World: Wumpuses

- Wumpus as object: Wumpus
- Wumpus home as unary predicate: WumpusIn(x)

Better: Wumpus's home as a function: Home(Wumpus) references the wumpus's home square.

FOL Reasoning: Outline

Basics of FOL reasoning Classes of FOL reasoning methods

- Forward & Backward Chaining
- Resolution
- Compilation to SAT

Basics: Universal Instantiation

Universally quantified sentence:

• $\forall x$: Monkey(x) \Rightarrow Curious(x)

Intutively, x can be anything:

- Monkey(George) \Rightarrow Curious(George)
- · Monkey(473Student1) \Rightarrow Curious(473Student1)
- Monkey(DJof(Miley)) \Rightarrow Curious(DJof(Miley))

Formally:	Example:	
∀x S	$\forall x Monkey(x) \rightarrow Curious(x)$	
Subst({x/p}, S)	Monkey(George) → Curious(George)	

x is replaced with p in S, and the quantifier removed x is replaced with George in S, and the quantifier removed

Basics: Existential Instantiation Existentially quantified sentence: $\exists x: Monkey(x) \land \neg Curious(x)$ Intutively, x must name something. But what? Can we conclude: Monkey(George) <a>^ -Curious(George) ??? No! Sentence might not be true for George! Use a Skolem Constant and draw the conclusion:

Monkey(K) A ¬Curious(K) where K is a completely new symbol you created (stands for the monkey for which the statement is true)

Formally:

∃x_S Subst({x/K}, S) K is called a Skolem constant

Basics: Generalized Skolemization What if our existential variable is nested? ∀x ∃y: Monkey(x) ⇒ HasTail(x, y) Can we conclude: ∀x: Monkey(x) ⇒ HasTail(x, K_Tail) ???

Nested existential variables can be replaced by Skolem functions that you create

- Args to function are all surrounding \forall vars
- $\forall x: Monkey(x) \Rightarrow HasTail(x, f(x))$

"tail-of" function

- Reasoning with FOL Chaining Resolution Compilation to SAT
- To Do: Project #2 Read Chapters 8-9