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Recall: Propositional Logic Terminology 

Literal  
= proposition symbol or its negation 
 E.g., A, A, B, B, etc. (positive vs. negative) 

Clause  
= disjunction of literals 
 E.g., (B  C  D) 

Conjunctive Normal Form (CNF): 
   sentence = conjunction of clauses 
 E.g., (A  B)  (B  C  D) 

 

Can think of KB as a conjunction of clauses, i.e. 
one long sentence 

 



Review: Inference Technique I: Resolution 

Empty clause 

Recall that KB is a conjunction of all these clauses 
Is P1,2  P1,2 satisfiable? No! 
 
Therefore, KB    is unsatisfiable, i.e., KB ╞  
 

You got a literal and its negation 

What does this (empty clause) mean? 

KB              
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Inference Technique II: 
Forward/Backward Chaining 

• Requirement: Sentences need to be in Horn Form: 
 KB = conjunction of Horn clauses 

 Horn clause =  

• proposition symbol  or 

• “(conjunction of symbols)  symbol”  

  (i.e. clause with at most 1 positive literal) 

 E.g., KB = C  (B  A)  (C  D  B) 

• F/B chaining based on “Modus Ponens” rule:  

1, … , n,   1  …  n   

 
 Complete for Horn clauses 

• Very natural and linear time complexity in size of KB 
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Forward chaining 

• Idea: fire any rule whose premises are satisfied in KB, 
 add its conclusion to KB, until query q is found 

AND-OR Graph Query = “Is Q true?” 
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Forward chaining example 

Query = Q  
(i.e. “Is Q true?”) 



7 

Forward chaining example 
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Forward chaining example 
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Forward chaining example 
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Forward chaining example 
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Forward chaining example 

“Q is true” 
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Forward chaining algorithm 

 Forward chaining is sound & complete for Horn KB 
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Backward Chaining (BC) 

Idea: work backwards from the query q: 
To prove q by BC, 

check if q is known to be true already, or 
prove by BC all premises of some rule concluding q 
(each premise to be proved is a subgoal) 
 

Avoid loops: check if new subgoal is already on goal stack 
 
Avoid repeated work: check if new subgoal 

1. has already been proved true, or 
2. has already failed 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 



17 

Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 

“Q is true” 
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Forward vs. backward chaining 
• FC is data-driven, automatic, unconscious processing, 

 e.g., object recognition, routine decisions 
 

• FC may do lots of work that is irrelevant to the goal  
 

• BC is goal-driven, appropriate for problem-solving, 
 e.g., How do I get an A in this class? 
 e.g., What is my best exit strategy out of the 

 classroom? 
 e.g., How can I impress my date tonight? 

 
• Complexity of BC can be much less than linear in size 

of KB 
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Recall: Inference by Model Checking 

Complete search algorithms 
Truth table enumeration: Recursive depth-first 
enumeration of assignments to all symbols (TT-entails) 

 Heuristic search  
DPLL algorithm (Davis, Putnam, Logemann, Loveland): 

Recursive depth-first enumeration of possible models 
with heuristics (see textbook if interested) 

 

Incomplete local search algorithms 
 WalkSAT algorithm for checking satisfiability 
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Why Satisfiability? 

Can’t get 
satisfaction 
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Why Satisfiability? 

• Recall: KB ╞ α iff KB  α is unsatisfiable 
• Equivalent to proving sentence α by contradiction 

 
• Thus, algorithms for satisfiability can be 

used for inference (entailment) 
 

• However, determining if a sentence is 
satisfiable or not (the SAT problem) is 
NP-complete 
 Finding a fast algorithm for SAT 

automatically yields fast algorithms for 
hundreds of difficult (NP-complete) problems 
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Satisfiability Examples 

E.g. 2-CNF sentences (2 literals per clause): 
 
(A  B)  (A  B)  (A  B)  
Satisfiable? 
Yes (e.g., A = true, B = false) 
 
(A  B)  (A  B)  (A  B)  (A   B) 
Satisfiable? 
No 
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The WalkSAT algorithm 
• Local search algorithm 

 Incomplete: may not always find a satisfying 
assignment even if one exists 

• Evaluation function? (“fitness” function) 
 = Number of satisfied clauses 

 WalkSAT tries to maximize this function 

• Balance between greediness and randomness 
 Each iteration: 
 Randomly select a symbol for flipping (T to F or F to T) 

 OR select symbol that maximizes # satisfied clauses  
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The WalkSAT algorithm 

Greed Randomness 



30 

Hard Satisfiability Problems 
Consider random 3-CNF sentences. e.g., 
 (D  B  C)  (B  A  C)  (C   
B  A)  (A  D  B)  (B  D  C) 

 

Satisfiable? 
(Yes, e.g., A = B = C = true) 

m = number of clauses (Here 5) 
n = number of symbols (Here 4 – A, B, C, D) 
m/n = 1.25 (enough symbols, usually satisfiable) 

 

 Hard instances of SAT seem to cluster near 
m/n = 4.3 (critical point) 
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Hard Satisfiability Problems 

Under-
constrained 

Over-
constrained 
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Hard Satisfiability Problems 
 Median runtime for 100 satisfiable random 3-CNF 

sentences, n = 50 

Under-
constrained 

Over-
constrained 

Hard! 



What about me? 



Wumpus World 
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Putting it all together: 
Logical Wumpus Agents 

A wumpus-world agent using propositional logic: 
 

P1,1  
W1,1  
For x = 1, 2, 3, 4 and y = 1, 2, 3, 4, add (with 

appropriate boundary conditions): 
 Bx,y  (Px,y+1  Px,y-1  Px+1,y  Px-1,y)  
 Sx,y  (Wx,y+1  Wx,y-1  Wx+1,y  Wx-1,y) 
 W1,1  W1,2  …  W4,4  
 (W1,1  W1,2) 
 (W1,1  W1,3) 
… 

 64 distinct proposition symbols, 155 sentences! 

At most 1 wumpus 

At least 1 wumpus 



36 

• KB contains "physics" sentences for every single 
square 
 

• For every time step t and every location [x,y], we 
need to add to the KB “physics” rules such as: 

  Lx,y  FacingRight t  Forward t  Lx+1,y  
 
• Rapid proliferation of sentences… 

Limitations of propositional logic 

t+1 t 



What we’d like is a way to talk 
about objects and groups of 

objects, and to define 
relationships between them. 

Enter: First-order logic  
(aka “predicate logic”) 



Next Time 

• First-Order Logic 
• To Do: 

 Project #2 
 Read chapter 8 
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