CSE 473

Lecture 11

Chapter 7

Inference in Propositional Logic

Recall: Propositional Logic Terminology

Literal
= proposition symbol or its negation
E.g., $A, \neg A, B, \neg B$, etc. (positive vs. negative)

Clause
= disjunction of literals

$$
\text { E.g., }(B \vee \neg C \vee \neg D)
$$

Conjunctive Normal Form (CNF):

$$
\text { sentence }=\text { conjunction of clauses }
$$

$$
\text { E.g., }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)
$$

Can think of $K B$ as a conjunction of clauses, i.e. one long sentence

Review: Inference Technique I: Resolution
KB
$\neg \alpha$

You got a literal and its negation
Empty clause What does this (empty clause) mean?

Recall that KB is a conjunction of all these clauses Is $P_{1,2} \wedge \neg P_{1,2}$ satisfiable? No!

Therefore, $K B \wedge \neg \alpha$ is unsatisfiable, i.e., $K B \neq \alpha$

Inference Technique II: Forward/Backward Chaining

- Requirement: Sentences need to be in Horn Form: $K B=$ conjunction of Horn clauses Horn clause =

- proposition symbol or
- "(conjunction of symbols) \Rightarrow symbol" (i.e. clause with at most 1 positive literal)
E.g., $K B=C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$
- F/B chaining based on "Modus Ponens" rule:

Complete for Horn clauses

- Very natural and linear time complexity in size of KB

Forward chaining

- Idea: fire any rule whose premises are satisfied in $K B$, add its conclusion to $K B$, until query q is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

AND-OR Graph

Forward chaining example

Query = \mathbf{Q}

(i.e. "Is Q true?")

Forward chaining example

Forward chaining algorithm

function PL-FC-Entails? $(K B, q)$ returns true or false
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true
while agenda is not empty do

$$
p \leftarrow \mathrm{POP}(\text { agenda })
$$

unless inferred $[p]$ do
inferred $[p] \leftarrow$ true
for each Horn clause c in whose premise p appears do
decrement count $[c]$
if $\operatorname{count}[c]=0$ then do if $\mathrm{HEAD}[c]=q$ then return true $\operatorname{Push}(\operatorname{Head}[c]$, agenda)
return false

Forward chaining is sound \& complete for Horn KB

Backward Chaining (BC)

Idea: work backwards from the query q : To prove q by $B C$,
check if q is known to be true already, or prove by $B C$ all premises of some rule concluding q (each premise to be proved is a subgoal)

Avoid loops: check if new subgoal is already on goal stack
Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

Backward chaining example

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing, e.g., object recognition, routine decisions
- FC may do lots of work that is irrelevant to the goal
- $B C$ is goal-driven, appropriate for problem-solving, e.g., How do I get an A in this class? e.g., What is my best exit strategy out of the classroom?
e.g., How can I impress my date tonight?
- Complexity of $B C$ can be much less than linear in size of KB

Recall: Inference by Model Checking

Complete search algorithms
Truth table enumeration: Recursive depth-first enumeration of assignments to all symbols (TT-entails)
Heuristic search
DPLL algorithm (Davis, Putnam, Logemann, Loveland): Recursive depth-first enumeration of possible models with heuristics (see textbook if interested)

Incomplete local search algorithms WalkSAT algorithm for checking satisfiability

Why Satisfiability?

Why Satisfiability?

- Recall: $K B$ = a iff $K B \wedge \neg a$ is unsatisfiable - Equivalent to proving sentence a by contradiction
- Thus, algorithms for satisfiability can be used for inference (entailment)
- However, determining if a sentence is satisfiable or not (the SAT problem) is NP-complete

Finding a fast algorithm for SAT automatically yields fast algorithms for hundreds of difficult (NP-complete) problems

Satisfiability Examples

E.g. 2-CNF sentences (2 literals per clause):
$(\neg A \vee \neg B) \wedge(A \vee B) \wedge(A \vee \neg B)$
Satisfiable?
Yes (e.g., $A=$ true, $B=$ false)
$(\neg A \vee \neg B) \wedge(A \vee B) \wedge(A \vee \neg B) \wedge(\neg A \vee B)$
Satisfiable?
No

The WalkSAT algorithm

- Local search algorithm

Incomplete: may not always find a satisfying assignment even if one exists

- Evaluation function? ("fitness" function)
= Number of satisfied clauses
WalkSAT tries to maximize this function
- Balance between greediness and randomness

Each iteration:
Randomly select a symbol for flipping (T to F or F to T) OR select symbol that maximizes \# satisfied clauses

The WalkSAT algorithm

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clauses
for $i=1$ to max-fips do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Greed

Randomness

Hard Satisfiability Problems

Consider random 3-CNF sentences. e.g.,

$$
\begin{aligned}
& (\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \\
& \neg B \vee A) \wedge(A \vee \neg D \vee B) \wedge(B \vee D \vee \neg C)
\end{aligned}
$$

Satisfiable?
(Yes, e.g., $A=B=C=$ true)
$m=$ number of clauses (Here 5)
$n=$ number of symbols (Here 4-A, B, C, D) $m / n=1.25$ (enough symbols, usually satisfiable)

Hard instances of SAT seem to cluster near $m / n=4.3$ (critical point)

Hard Satisfiability Problems

Hard Satisfiability Problems

Median runtime for 100 satisfiable random 3-CNF sentences, $n=50$

What about me?

Wumpus World

Putting it all together: Logical Wumpus Agents

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg P_{1,1} \\
& \neg W_{1,1} \\
& \text { For } x=1,2,3,4 \text { and } y=1,2,3,4 \text {, add (with } \\
& \text { appropriate boundary conditions): } \\
& B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) \\
& W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \quad \text { At least } 1 \text { wumpus } \\
& \neg\left(W_{1,1} \wedge W_{1,2}\right) \quad \text { At most } 1 \text { wumpus } \\
& \neg\left(W_{1,1} \wedge W_{1,3}\right) \quad
\end{aligned}
$$

$\Rightarrow 64$ distinct proposition symbols, 155 sentences!

Limitations of propositional logic

- KB contains "physics" sentences for every single square
- For every time step t and every location $[x, y]$, we need to add to the KB "physics" rules such as:

$$
L_{x, y}^{\dagger} \wedge \text { FacingRight }^{\dagger} \wedge \text { Forward }^{\dagger} \Rightarrow L_{x+1, y}^{+1}
$$

- Rapid proliferation of sentences...

What we'd like is a way to talk about objects and groups of objects, and to define relationships between them.

Enter: First-order logic (aka "predicate logic")

Next Time

- First-Order Logic
- To Do:
Project \#2
Read chapter 8

