
CSE 473

Lecture 11
Chapter 7

Inference in Propositional Logic

© CSE AI faculty

2

Recall: Propositional Logic Terminology

Literal
= proposition symbol or its negation
 E.g., A, A, B, B, etc. (positive vs. negative)

Clause
= disjunction of literals
 E.g., (B  C  D)

Conjunctive Normal Form (CNF):
 sentence = conjunction of clauses
 E.g., (A  B)  (B  C  D)

Can think of KB as a conjunction of clauses, i.e.
one long sentence

Review: Inference Technique I: Resolution

Empty clause

Recall that KB is a conjunction of all these clauses
Is P1,2  P1,2 satisfiable? No!

Therefore, KB    is unsatisfiable, i.e., KB ╞ 

You got a literal and its negation

What does this (empty clause) mean?

KB 

4

Inference Technique II:
Forward/Backward Chaining

• Requirement: Sentences need to be in Horn Form:
 KB = conjunction of Horn clauses

 Horn clause =

• proposition symbol or

• “(conjunction of symbols)  symbol”

 (i.e. clause with at most 1 positive literal)

 E.g., KB = C  (B  A)  (C  D  B)

• F/B chaining based on “Modus Ponens” rule:

1, … , n, 1  …  n  


 Complete for Horn clauses

• Very natural and linear time complexity in size of KB

5

Forward chaining

• Idea: fire any rule whose premises are satisfied in KB,
 add its conclusion to KB, until query q is found

AND-OR Graph Query = “Is Q true?”

6

Forward chaining example

Query = Q
(i.e. “Is Q true?”)

7

Forward chaining example

8

Forward chaining example

9

Forward chaining example

10

Forward chaining example

11

Forward chaining example

“Q is true”

12

Forward chaining algorithm

 Forward chaining is sound & complete for Horn KB

13

Backward Chaining (BC)

Idea: work backwards from the query q:
To prove q by BC,

check if q is known to be true already, or
prove by BC all premises of some rule concluding q
(each premise to be proved is a subgoal)

Avoid loops: check if new subgoal is already on goal stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

14

Backward chaining example

15

Backward chaining example

16

Backward chaining example

17

Backward chaining example

18

Backward chaining example

19

Backward chaining example

20

Backward chaining example

21

Backward chaining example

22

Backward chaining example

“Q is true”

23

Forward vs. backward chaining
• FC is data-driven, automatic, unconscious processing,

 e.g., object recognition, routine decisions

• FC may do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,
 e.g., How do I get an A in this class?
 e.g., What is my best exit strategy out of the

 classroom?
 e.g., How can I impress my date tonight?

• Complexity of BC can be much less than linear in size

of KB

24

Recall: Inference by Model Checking

Complete search algorithms
Truth table enumeration: Recursive depth-first
enumeration of assignments to all symbols (TT-entails)

 Heuristic search
DPLL algorithm (Davis, Putnam, Logemann, Loveland):

Recursive depth-first enumeration of possible models
with heuristics (see textbook if interested)

Incomplete local search algorithms
 WalkSAT algorithm for checking satisfiability

25

Why Satisfiability?

Can’t get
satisfaction

26

Why Satisfiability?

• Recall: KB ╞ α iff KB  α is unsatisfiable
• Equivalent to proving sentence α by contradiction

• Thus, algorithms for satisfiability can be

used for inference (entailment)

• However, determining if a sentence is
satisfiable or not (the SAT problem) is
NP-complete
 Finding a fast algorithm for SAT

automatically yields fast algorithms for
hundreds of difficult (NP-complete) problems

27

Satisfiability Examples

E.g. 2-CNF sentences (2 literals per clause):

(A  B)  (A  B)  (A  B)
Satisfiable?
Yes (e.g., A = true, B = false)

(A  B)  (A  B)  (A  B)  (A  B)
Satisfiable?
No

28

The WalkSAT algorithm
• Local search algorithm

 Incomplete: may not always find a satisfying
assignment even if one exists

• Evaluation function? (“fitness” function)
 = Number of satisfied clauses

 WalkSAT tries to maximize this function

• Balance between greediness and randomness
 Each iteration:
 Randomly select a symbol for flipping (T to F or F to T)

 OR select symbol that maximizes # satisfied clauses

29

The WalkSAT algorithm

Greed Randomness

30

Hard Satisfiability Problems
Consider random 3-CNF sentences. e.g.,
 (D  B  C)  (B  A  C)  (C 
B  A)  (A  D  B)  (B  D  C)

Satisfiable?
(Yes, e.g., A = B = C = true)

m = number of clauses (Here 5)
n = number of symbols (Here 4 – A, B, C, D)
m/n = 1.25 (enough symbols, usually satisfiable)

 Hard instances of SAT seem to cluster near
m/n = 4.3 (critical point)

31

Hard Satisfiability Problems

Under-
constrained

Over-
constrained

32

Hard Satisfiability Problems
 Median runtime for 100 satisfiable random 3-CNF

sentences, n = 50

Under-
constrained

Over-
constrained

Hard!

What about me?

Wumpus World

34

35

Putting it all together:
Logical Wumpus Agents

A wumpus-world agent using propositional logic:

P1,1
W1,1
For x = 1, 2, 3, 4 and y = 1, 2, 3, 4, add (with

appropriate boundary conditions):
 Bx,y  (Px,y+1  Px,y-1  Px+1,y  Px-1,y)
 Sx,y  (Wx,y+1  Wx,y-1  Wx+1,y  Wx-1,y)
 W1,1  W1,2  …  W4,4
 (W1,1  W1,2)
 (W1,1  W1,3)
…

 64 distinct proposition symbols, 155 sentences!

At most 1 wumpus

At least 1 wumpus

36

• KB contains "physics" sentences for every single
square

• For every time step t and every location [x,y], we
need to add to the KB “physics” rules such as:

 Lx,y  FacingRight t  Forward t  Lx+1,y

• Rapid proliferation of sentences…

Limitations of propositional logic

t+1 t

What we’d like is a way to talk
about objects and groups of

objects, and to define
relationships between them.

Enter: First-order logic
(aka “predicate logic”)

Next Time

• First-Order Logic
• To Do:

 Project #2
 Read chapter 8

38

