CSE 473

Chapter 7

Inference Techniques for Logical Reasoning

Recall: Wumpus World

Wumpusitional Logic

Proposition Symbols and Semantics:
Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	${ }^{2,2} \mathbf{P} \text { ? }$	3,2	4,2
$\begin{array}{\|cc\|} \hline 1,1 & \\ & \mathbf{v} \\ & \text { OK } \end{array}$	$\begin{array}{\|r\|r\|} \hline 2,1 & \mathbf{A} \\ & \begin{array}{r} \mathbf{B} \\ \text { OK } \end{array} \end{array}$	$3,1 \mathbf{P} ?$	4,1

Wumpus KB

Knowledge Base (KB) includes the following sentences:

- Statements currently known to be true:

$$
\begin{aligned}
& \neg \mathrm{P}_{1,1} \\
& \neg \mathrm{~B}_{1,1} \\
& \mathrm{~B}_{2,1}
\end{aligned}
$$

- Properties of the world: E.g., "Pits cause breezes in adjacent squares"

$$
\begin{aligned}
& B_{1,1} \Leftrightarrow \quad\left(P_{1,2} \vee P_{2,1}\right) \\
& B_{2,1} \Leftrightarrow \quad\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)
\end{aligned}
$$

(and so on for all squares)

Is there no pit in [1,2]?

Recall from last time:
m is a model of a sentence α if α is true in m
$M(\alpha)$ is the set of all models of α
KB $\vDash \alpha($ KB "entails" α) iff $M(K B) \subseteq M(\alpha)$

$K B=$ wumpus-world rules + observations

Inference by Truth Table Enumeration

In all models in which $K B$ is true, $\neg \mathbb{P}_{1,2}$ is also true Therefore, $K B \quad \vDash P_{1,2}$

Another Example

Is there a pit in [2,2]?

Inference by Truth Table Enumeration

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB
false							
false	false	false	false	false	false	true	false
\vdots							
false	true	false	false	false	false	false	false
false	true	false	false	false	false	true	true
false	true	false	false	false	true	false	true
false	true	false	false	false	true	true	true
false	true	false	false	true	false	false	false
\vdots							
true	false						

$P_{2,2}$ is false in a model in which $K B$ is true Therefore, $K B \not \not / P_{2,2}$

Inference by TT Enumeration

- Algorithm: Depth-first enumeration of all models (see Fig. 7.10 in text for pseudocode)
- Algorithm sound?

Yes

- Algorithm complete?

Yes

- For n symbols, time and space?
- time complexity $=O\left(2^{n}\right)$, space $=O(n)$

Other Inference Techniques Rely on Logical Equivalence Laws

Two sentences are logically equivalent iff they are true in the same models: $\alpha \equiv \beta$ iff $a=\beta$ and $\beta=\alpha$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Inference Techniques also rely on Validity and Satisfiability

- A sentence is valid if it is true in all models (a tautology)
e.9., True, $A \vee \neg A, A \Rightarrow A,(A \wedge(A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the Deduction Theorem:
$K B \equiv a$ if and only if $(K B \Rightarrow a)$ is valid
- A sentence is satisfiable if it is true in some model e.g., $A \vee B, C$
- A sentence is unsatisfiable if it is true in no models

$$
\text { e.g., } A \wedge \neg A
$$

- Satisfiability is connected to inference via the following: $K B$ = a if and only if $(K B \wedge \neg a)$ is unsatisfiable (proof by contradiction)

Inference/Proof Techniques

- Two kinds (roughly):

1. Model checking

- Truth table enumeration (always exponential in n)
- Efficient backtracking algorithms,
e.g., Davis-Putnam-Logemann-Loveland (DPLL)
- Local search algorithms (sound but incomplete) e.g., randomized hill-climbing (WalkSAT)

2. Successive application of inference rules

- Generate new sentences from old in a sound way
- Proof = a sequence of inference rule applications
- Use inference rules as successor function in a standard search algorithm
Let us look at a \#2 type technique: Resolution...

Inference Technique I: Resolution

Motivation

There is a pit in $[1,3]$ or There is a pit in $[2,2]$

There is no pit in $[2,2]$

There is a pit in [1,3]
More generally,

$G_{1} \vee \ldots \vee h_{k}$,	$\neg \mathcal{F}_{i}$
$G_{1} \vee \ldots \vee ¢_{i-1} \vee$	

Resolution

Terminology:
Literal = proposition symbol or its negation
E.g., $A, \neg A, B, \neg B$, etc.

Clause $=$ disjunction of literals

$$
\text { E.g., }(B \vee \neg C \vee \neg D)
$$

Resolution assumes sentences are in Conjunctive Normal Form (CNF): sentence $=$ conjunction of clauses E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Conversion to CNF

E.g., $B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow a)$. $\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
2. Eliminate \Rightarrow, replacing $a \Rightarrow \beta$ with $\neg a \vee \beta$.
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgan's rule:
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$
4. Apply distributivity law (\wedge over \vee) and flatten:
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$
This is in CNF - Done!

Inference Technique: Resolution

- General Resolution inference rule (for CNF):

$$
\frac{C_{1} \vee \ldots \vee ケ_{i} \ldots \vee C_{k}, m_{1} \vee \ldots \vee m_{j} \ldots \vee m_{n}}{G_{1} \vee \ldots \vee \int_{i-1} \vee f_{i+1} \vee \ldots \vee C_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}}
$$ where f_{i} and m_{j} are complementary literals i.e. $\digamma_{\mathrm{i}}=\neg m_{\mathrm{j}}$.

E.g., $\frac{P_{1,3} \vee P_{2,2} \quad \neg P_{2,2}}{P_{1,3}}$

Soundness of Resolution Inference Rule

(Recall logical equivalence $A \Rightarrow B \equiv \neg A \vee B$) Express each clause as:

$$
\begin{aligned}
\neg\left(\mathfrak{f}_{\vee} \vee \ldots \vee f_{i-1} \vee f_{i+1} \vee \ldots \vee f_{k}\right) & \Rightarrow\left\{_{i}\right. \\
\neg m_{j} & \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right)
\end{aligned} \frac{\neg\left(f_{i} \vee \ldots \vee f_{i-1} \vee f_{i+1} \vee \ldots \vee f_{k}\right) \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right)}{}
$$

(since $\mathfrak{f}_{\mathrm{i}}=\neg \mathrm{m}_{\mathrm{j}}$)

Resolution algorithm

- To show KB $=$ a, use proof by contradiction, i.e., show $K B \wedge \neg a$ unsatisfiable
function PL-RESOLUTION $(K B, \alpha)$ returns true or false clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$ loop do

```
for each \(C_{i}, C_{j}\) in clauses do
        resolvents \(\leftarrow \mathrm{PL}-\mathrm{RESOLVE}\left(C_{i}, C_{j}\right)\)
    if resolvents contains the empty clause then return true
        \(n e w \leftarrow n e w \cup\) resolvents
    if new \(\subseteq\) clauses then return false
    clauses \(\leftarrow\) clauses \(\cup\) new
```


Resolution example

Given no breeze in [1,1], prove there's no pit in [1,2]
$K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1}$ and $\alpha=\neg P_{1,2}$
Resolution: Convert to CNF and show $K B \wedge \neg \alpha$ is unsatisfiable

Resolution example

Empty clause
(i.e., $K B \wedge \neg a$ unsatisfiable)

Next Time

- WalkSAT
- Logical Agents: Wumpus
- First-Order Logic
- To Do:

Project \#2
Finish Chapter 7
Start Chapter 8

