CSE 473 Chapter 7

Inference Techniques for Logical Reasoning

 $\neg P_{\scriptscriptstyle 1,2} \lor B_{\scriptscriptstyle 1,1}$

 $P_{1,2} \lor P_{2,1} \lor \neg P_{2,1}$

 $\neg B_{1,1}$

 $\neg P_{2,1}$

 $\overline{\neg P_{1,2}}$

 $P_{1,2}$

Recall: Wumpus World

Wumpusitional Logic

Proposition Symbols and Semantics: Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 ок	^{2,2} P?	3,2	4,2
1,1 V ОК	^{2,1} A B OK	^{3,1} P?	4,1

Wumpus KB

Knowledge Base (KB) includes the following sentences:

 Statements currently known to be true:

• Properties of the world: E.g., "Pits cause breezes in adjacent squares" $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$

 $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ (and so on for all squares)

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	^{2,2} P?	3,2	4,2
ок			
1,1 v	^{2,1} A B	^{3,1} P?	4,1
ок	OK		

Recall from last time:

m is a model of a sentence α if α is true in *m*

 $M(\alpha)$ is the set of <u>all models</u> of α

KB $\models \alpha$ (KB "entails" α) iff $M(KB) \subseteq M(\alpha)$

KB = wumpus-world rules + observations

Inference by Truth Table Enumeration

	$B_{1,1}$	$B_{2,1}$	P _{1,1}	P _{1,2}	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	-P _{1,2}
Model 1	false	false	false				false	false	true
Model 2	false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	÷	:	:	:
•	false	true	false	false	false	false	false	false	true
	false	true	false	false	false	false	true	\underline{true}	\underline{true}
	false	true	false	false	false	true	false	\underline{true}	\underline{true}
	false	true	false	false	false	true	true	\underline{true}	\underline{true}
	false	true	false	false	true	false	false	false	true
			:	:	:	:	:	:	:
	true	true	true	true	true	true	true	false	false

In all models in which KB is true, $\neg P_{1,2}$ is also true Therefore, KB $\models \neg P_{1,2}$

Another Example

Inference by Truth Table Enumeration

$B_{1,1}$	$B_{2,1}$	P _{1,1}	$P_{1,2}$	$P_{2,1}$	P _{2,2}	$P_{3,1}$	KB
false	false	false	false	false	false	false	false
false	false	false	false	false	false	true	false
:	:	-	:	:	:		:
false	true	false	false	false	false	false	false
false	true	false	false	false	false	true	true
false	true	false	false	false	true	false	<u>true</u>
false	true	false	false	false	true	true	\underline{true}
false	true	false	false	true	false	false	false
:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false

 $P_{2,2}$ is false in a model in which KB is true Therefore, KB $\not \models P_{2,2}$

Inference by TT Enumeration

- Algorithm: Depth-first enumeration of all models (see Fig. 7.10 in text for pseudocode)
- Algorithm sound?
 Yes
- Algorithm complete?
 Yes
- For *n* symbols, time and space?
- time complexity = $O(2^n)$, space = O(n)

Other Inference Techniques Rely on Logical Equivalence Laws

Two sentences are logically equivalent iff they are true in the same models: $a \equiv \beta$ iff $a \models \beta$ and $\beta \models a$

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Inference Techniques also rely on Validity and Satisfiability

A sentence is *valid* if it is true in *all* models (a tautology)

e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

 Validity is connected to inference via the Deduction Theorem:

 $KB \models a$ if and only if $(KB \Rightarrow a)$ is valid

- A sentence is *satisfiable* if it is true in *some* model e.g., $A \lor B$, C
- A sentence is *unsatisfiable* if it is true in no models e.g., $A \land \neg A$
- Satisfiability is connected to inference via the following: $KB \models a$ if and only if $(KB \land \neg a)$ is unsatisfiable (proof by contradiction)

Inference/Proof Techniques

- Two kinds (roughly):
 - 1. Model checking
 - Truth table enumeration (always exponential in n)
 - Efficient backtracking algorithms,
 - e.g., Davis-Putnam-Logemann-Loveland (DPLL)
 - Local search algorithms (sound but incomplete) e.g., randomized hill-climbing (WalkSAT)
 - 2. Successive application of inference rules
 - Generate new sentences from old in a sound way
 - Proof = a sequence of inference rule applications
 - Use inference rules as successor function in a standard search algorithm

Let us look at a #2 type technique: Resolution...

Inference Technique I: <u>Resolution</u> Motivation

There is a pit in [1,3] or There is a pit in [2,2]

There is no pit in [2,2]

There is a pit in [1,3]

More generally, $\frac{\ell_{1} \vee ... \vee \ell_{k}, \qquad \neg \ell_{i}}{\ell_{1} \vee ... \vee \ell_{i-1} \vee \ell_{i+1} \vee ... \vee \ell_{k}}$

Terminology:

- Literal = proposition symbol or its negation E.g., A, $\neg A$, B, $\neg B$, etc.
- Clause = disjunction of literals E.g., $(B \lor \neg C \lor \neg D)$

Resolution assumes sentences are in Conjunctive Normal Form (CNF): sentence = conjunction of clauses E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Conversion to CNF

 $\mathsf{E.g., B}_{1,1} \iff (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1})$

- 1. Eliminate \Leftrightarrow , replacing $a \Leftrightarrow \beta$ with $(a \Rightarrow \beta) \land (\beta \Rightarrow a)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing $a \Rightarrow \beta$ with $\neg a \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move \neg inwards using de Morgan's rule: ($\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$) \land (($\neg P_{1,2} \land \neg P_{2,1}$) $\lor B_{1,1}$)
- 4. Apply distributivity law (\land over \lor) and flatten: ($\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$) \land ($\neg P_{1,2} \lor B_{1,1}$) \land ($\neg P_{2,1} \lor B_{1,1}$)

This is in CNF - Done!

Inference Technique: Resolution

• General Resolution inference rule (for CNF): $\frac{l_{1} \vee ... \vee l_{i} ... \vee l_{k}, \quad m_{1} \vee ... \vee m_{j} ... \vee m_{n}}{l_{1} \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_{k} \vee m_{1} \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_{n}}$ where l_{i} and m_{j} are complementary literals i.e. $l_{i} = \neg m_{j}$.

E.g.,
$$P_{1,3} \vee P_{2,2}$$
, $\neg P_{2,2}$
 $P_{1,3}$

P ^{•?}		
в ок А А	<u>></u>	
ок А	s ок —>А	

Soundness of Resolution Inference Rule

(Recall logical equivalence $A \Rightarrow B \equiv \neg A \lor B$) Express each clause as:

$$\neg (l_1 \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_k) \Rightarrow l_i$$

$$\neg m_j \Rightarrow (m_1 \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_n)$$

 $\neg(l_{i} \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_{k}) \Rightarrow (m_{1} \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_{n})$ (since $l_{i} = \neg m_{j}$)

Resolution algorithm

To show KB = a, use proof by contradiction,
 i.e., show KB ^ ¬a unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false

clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha

new \leftarrow \{\}

loop do

for each C_i, C_j in clauses do

resolvents \leftarrow PL-RESOLVE(C_i, C_j)

if resolvents contains the empty clause then return true

new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new
```

Resolution example

Given no breeze in [1,1], prove there's no pit in [1,2]

KB = (
$$B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$$
) $\land \neg B_{1,1}$ and $\alpha = \neg P_{1,2}$

Resolution: Convert to CNF and show KB $\wedge \neg \alpha$ is unsatisfiable

Resolution example

(i.e., KB $\land \neg$ a unsatisfiable)

Next Time

- WalkSAT
- Logical Agents: Wumpus
- First-Order Logic
- To Do: Project #2 Finish Chapter 7 Start Chapter 8