

"BEING ADVERSARIES GOT STALE, SO NOW WE'RE DRINKING BUDDIES."

Based on slides from CSE AI Faculty + Dan Klein, Stuart Russell, Andrew Moore

# Where we have been and where we are headed

#### Blind Search

- DFS, BFS, IDS
- Informed Search
  - Systematic: Uniform cost, greedy best first, A\*, IDA\*
  - Stochastic: Hill climbing, simulated annealing, GAs

#### Adversarial Search

- Mini-max
- Alpha-beta pruning
- Evaluation functions for cut off search
- Expectimax & Expectiminimax

# Modeling the Opponent

#### So far assumed

Opponent = rational, optimal (always picks MIN values)

#### What if

Opponent = random? (picks action randomly) 2 player w/ random opponent = 1 player stochastic

# **Stochastic Single-Player**

- Don't know what the result of an action will be. E.g.,
  - In backgammon, don't know result of dice throw; In solitaire, card shuffle is unknown; in minesweeper, mine locations are unknown
  - In Pac-Man, suppose the ghosts behave randomly



#### Game Tree for Stochastic Single-Player Game

#### Game tree has

- MAX nodes as before
- Chance nodes: Environment selects an action with some probability



#### Should we use Minimax Search?

- Minimax strategy: Pick MIN value move at each chance node
- Which move (action) would MAX choose?
- MAX would always choose A<sub>2</sub>
  - Average utility =
     6/2+4/2 = 5
- If MAX had chosen A<sub>1</sub>
  - Average utility = 11



#### **Expectimax Search**

#### Expectimax search:

Chance nodes take average (expectation) of value of children

 MAX picks move with maximum expected value



# Maximizing Expected Utility

- Principle of maximum expected utility: An agent should chose the action which maximizes its expected utility, given its knowledge
  - General principle for decision making
  - Often taken as the definition of *rationality*
  - We will see this idea over and over in this course!
- Let's decompress this definition...

# **Review of Probability**

- A random variable represents an event whose outcome is unknown
  - Example:
  - Random variable T = Traffic on freeway?
  - Outcomes (or values) for T: {none, light, heavy}
- A probability distribution is an assignment of weights to outcomes
  - Example: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

# **Review of Probability**

- Laws of probability (more later):
  - Probabilities are always in [0, 1]
  - Probabilities (over all possible outcomes) sum to one
- As we get more evidence, probabilities may change:
  - P(T=heavy) = 0.20
  - P(T=heavy | Hour=8am) = 0.60
  - We'll talk about conditional probabilities, methods for reasoning, and updating probabilities later

#### What are Probabilities?

Objectivist / frequentist answer:

Probability = average over repeated experiments

- Examples:
- Flip a coin 100 times; if 55 heads, 45 tails,
   P(heads)= 0.55 and P(tails) = 0.45
- P(rain) for Seattle from historical observation
- PacMan's estimate of what the ghost will do based on what it has done in the past
- P(10% of class will get an A) based on past classes
- P(100% of class will get an A) based on past classes

# What are Probabilities?

Subjectivist / Bayesian answer:

Degrees of belief about unobserved variables

- E.g. An agent's belief that it's raining based on what it has observed
- E.g. PacMan's belief that the ghost will turn left, given the state
- Your belief that a politician is lying
- Often agents can *learn* probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

# **Uncertainty Everywhere**

- Not just for games of chance!
  - Robot rotated wheel three times, how far did it advance?
  - Tooth hurts: have cavity?
  - At 45<sup>th</sup> and the Ave: Safe to cross street?
  - Got up late: Will you make it to class?
  - Didn't get coffee: Will you stay awake in class?
  - Email subject line says "I have a crush on you": Is it spam?

#### Where does uncertainty come from?

- Sources of uncertainty in random variables:
  - Inherently random processes (dice, coin, etc.)
  - Incomplete knowledge of the world
    - Ignorance of underlying processes
    - Unmodeled variables
  - Insufficient or ambiguous evidence, e.g., 3D to 2D image in vision

#### **Expectations**

- We can define a function f(X) of a random variable X
- The expected value of a function is its average value under the probability distribution over the function's inputs

$$E(f(X)) = \sum_{x} f(X = x)P(X = x)$$

#### Expectations

- Example: How long to drive to the airport?
  - Driving time (in mins) as a function of traffic T:
     D(T=none) = 20, D(T=light) = 30, D(T=heavy) = 60
  - What is your expected driving time?
    - Recall: P(T) = {none: 0.25, light: 0.5, heavy: 0.25}
    - E[D(T)] = D(none) \* P(none) + D(light) \* P(light) + D(heavy) \* P(heavy)
    - E[D(T)] = (20 \* 0.25) + (30 \* 0.5) + (60 \* 0.25) = 35 mins

#### Example 2

Example: Expected value of a fair die roll

| X | Р   | f |
|---|-----|---|
| 1 | 1/6 | 1 |
| 2 | 1/6 | 2 |
| 3 | 1/6 | 3 |
| 4 | 1/6 | 4 |
| 5 | 1/6 | 5 |
| 6 | 1/6 | 6 |

$$1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6}$$
$$= 3.5$$

## Utilities

- Utilities are *functions* from states of the world to real numbers that describe an agent's preferences
- Where do utilities come from?
  - In a game, may be simple (+1/0/-1 for win/tie/loss)
  - Utilities summarize the agent's goals
- In general, we hard-wire utilities and choose actions to maximize *expected utility*

### Back to Expectimax

#### **Expectimax search**

- Chance nodes have uncertain outcomes
- Take average (expectation) of value of children to get expected utility or value
- Max nodes as in minimax search but choose action with max expected utility



Later, we'll formalize the underlying problem as a Markov Decision Process

## **Expectimax Search**

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
  - Node for every outcome out of our control: opponent or environment
  - Model can be a simple uniform distribution (e.g., roll a die: 1/6)
  - Model can be sophisticated and require a great deal of computation
    - The model might even say that adversarial actions are more likely! E.g., Ghosts in PacMan



### Expectimax Pseudocode

#### def value(s)

if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)

```
def maxValue(s)
  values = [value(s') for s' in successors(s)]
  return max(values)
```

```
def expValue(s)
  values = [value(s') for s' in successors(s)]
  weights = [probability(s, s') for s' in successors(s)]
  return expectation(values, weights)
```



#### Minimax versus Expectimax

PacMan with ghosts moving randomly

3 ply look ahead

Minimax: Video

Forgettaboutit...



#### Minimax versus Expectimax

PacMan with ghosts moving randomly

3 ply look ahead

Expectimax: Video

Wins some of the time



LL Gool J. NY

### **Expectimax for Pacman**

- Ghosts not trying to minimize PacMan's score but moving at random
- They are a part of the environment
- Pacman has a belief (distribution) over how they will act

# What about Evaluation Functions for Limited Depth Expectimax?

- Evaluation functions quickly return an estimate for a node's true value
- For minimax, evaluation function scale doesn't matter
  - We just want better states to have higher evaluations (using MIN/MAX, so just get the relative value right)
  - We call this insensitivity to monotonic transformations
- For expectimax, *magnitudes* matter!



# Extending Expectimax to Stochastic Two Player Games



White has just rolled 6-5 and has 4 legal moves.

#### **Expectiminimax Search**

- In addition to MAX MIN- and MAX nodes, we have chance nodes (e.g., MIN for rolling dice)
- Chance nodes take expectations, otherwise like minimax



#### **Expectiminimax Search**

 ${f if}\ state\ {f is}\ {f a}\ {f MAX}\ {f node\ then}$ 

**return** the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) **if** *state* is a MIN node **then** 

**return** the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) **if** *state* is a chance node **then** 

**return** average of EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*)



Search costs increase: Instead of  $O(b^d)$ , we get  $O((bn)^d)$ , where *n* is the number of chance outcomes

# Example: TDGammon program



TDGammon uses depth-2 search + very good eval function + reinforcement learning (playing against itself!) → world-champion level play

# Summary of Game Tree Search

- Basic idea: Minimax
  - Too slow for most games
- Alpha-Beta pruning can increase max depth by factor up to 2
- Limited depth search necessary for most games
- Static evaluation functions necessary for limited depth search; opening game and end game databases can help
- Computers can beat humans in some games (checkers, chess, othello) but not yet in others (Go)
- Expectimax and Expectiminimax allow search in stochastic games

# To Do

- Finish Project #1: Due Sunday before midnight
- Finish Chapter 5; Read Chapter 7