
1

CSE 473

Lecture 7

Playing Games with Minimax and

Alpha-Beta Search

© CSE AI Faculty

Today

• Adversarial Search
 Minimax recap
 α-β search
 Evaluation functions
 State of the art in game playing

2

3

Recall: Game Trees

You

Opponent

You

Opponent

From current position, unwind game into the future

4

Recall: Minimax Search
• Find the best current move for MAX (you)

assuming MIN (opponent) also chooses its best
move

• Compute for each node n:

MINIMAX-VALUE(n)=
 UTILITY(n) if n is a terminal
 maxs succ(n) MINIMAX-VALUE(s) if n is a MAX node
 mins succ(n) MINIMAX-VALUE(s) if n is a MIN node

3

5

Example: Two-”Ply” Game Tree

(1 ply = 1 move = 1 layer in tree)

6

Two-Ply Game Tree

4

7

Two-Ply Game Tree
Minimax decision = A1

8

What if MIN does not play optimally?

• Definition of optimal play for MAX assumes MIN

plays optimally

 Maximizes worst-case outcome for MAX

• If MIN does not play optimally, MAX will do even

better (utility obtained by MAX will be higher).

[Prove it! See Exercise 5.7]

5

9

Minimax Algorithm

10

Example (4 ply) Which move to choose?

6

11

12

7

13

14

8

15

16

Choose this
move

9

17

Extension to Multiplayer Games
• More than two players
• Single minimax values become vectors
• At each node, apply max to appropriate

component of minimax vector

6 vs. 3

2 vs. 1

1 vs. -1

-1 vs. 2 -1 vs. 5 2 vs. -1

5 vs. 4

18

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)
 Suboptimal opponents: Other strategies may do

better but these will do worse for optimal opponents

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

10

19

Is Minimax good enough?

 Chess:
 branching factor b ≈ 35
 game length m ≈ 100
 search space bm ≈ 35100 ≈ 10154

 The Universe:
 number of atoms ≈ 1078

 age ≈ 1021 milliseconds

Can we search more efficiently?

20

Back to Two-Ply Game Tree

11

21

Pruning trees

Minimax algorithm explores depth-first

22

Pruning trees

At MIN node:
Current best MAX
value = 3 > 2

No need to look at these nodes!! (these
nodes can only decrease MIN value from 2)

MIN

MAX

12

23

Pruning trees

MIN

MAX

24

Pruning trees

MIN

MAX

13

25

Pruning trees

MIN

MAX

One more example

26

MIN

MAX

MAX

5 X

10

<=10

15 10 X

MAX >=15

14

One more example

27

MIN

MAX

MAX

5 X

10

<=10

15 10 X

MAX >=15 At MAX node:
Current best MIN
value = 10 < 15

No need to look at these nodes!! (these
nodes can only increase MAX value from 15)

This form of tree pruning is
known as alpha-beta pruning

alpha = highest (best) value for MAX along current path
from root

beta = lowest (best) value for MIN along current path
from root

15

The α-β algorithm

Pruning New

(minimax with four lines of added code)

MIN

MAX

5 X

10

=10

15 10 X

v=15

30

The α-β algorithm (cont.)

Pruning

 = 3

v = 2

MAX

MIN MIN

16

31

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 allows us to search deeper – doubles depth of search

• α-β search is a simple example of the value of
reasoning about which computations are relevant (a
form of metareasoning)

32

Good enough?

 Chess:
 branching factor b≈35
 game length m≈100
 α-β search space bm/2 ≈ 3550 ≈ 1077

 The Universe:
 number of atoms ≈ 1078

 age ≈ 1021 milliseconds

17

33

Transposition Tables

• Game trees contain repeated states

• In chess, e.g., the game tree may have 35100

nodes, but there are only 1040 different board
positions

• Similar to explored set in graph-search,
maintain a transposition table
Got its name from the fact that the same state is

reached by a transposition of moves.

• 1040 is still huge!

34

Can we do better?

• Strategies:
 search to a fixed depth (“cut off” search)
 iterative deepening (most common)

18

35

Use heuristic evaluation function for these nodes

Idea: cut off search

36

Heuristic Evaluation Functions
 Motivation: When search space is too large, create

game tree up to a certain depth only.

 Art is to estimate utilities of positions that are not
terminal states.

 Example of simple evaluation criteria in chess:

 Material worth: pawn=1, knight =3, rook=5, queen=9.

 Other: king safety, good pawn structure

 eval(s) =
 w1 * material(s) +
 w2 * mobility(s) +
 w3 * king safety(s) +
 w4 * center control(s) + ...

19

37

Cutting off search

 Does it work in practice?
 Suppose bm = 106 and b=35 m=4

 4-ply lookahead is a hopeless chess player!
 4-ply ≈ human novice
 8-ply ≈ typical PC, human master
 12-ply ≈ Deep Blue, Kasparov

Game Playing State-of-the-Art

 Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a
total of 443,748,401,247 positions. Checkers is now solved!

20

Game Playing State-of-the-Art

 Chess: Deep Blue defeated human world champion Gary Kasparov in
a six-game match in 1997. Deep Blue examined 200 million positions
per second, used very sophisticated evaluation functions and
undisclosed methods for extending some lines of search up to 40
ply. Current programs are even better, if less historic.

Game Playing State-of-the-Art

 Othello: Human champions
refuse to play against computers
because software is too good

 Go: Human champions refuse to
play against computers because
software is too bad.
 In Go, b > 300, so need

pattern databases and Monte
Carlo search

 Human champions are now
beginning to be challenged by
machines.

 Pacman: The reigning champion
is <your CSE 473 program here>

21

Next Time

• Rolling the dice
• Expectiminimax search

• To Do: Project #1 (due this Sunday!)

41

42

Exercise:
Prune this tree!

22

43

44

No, because -29>(-37) and other
children of min can only lower min’s
value of -37 (because of the min

operation)

23

45

x x

-43>(-75)
Another pruning opportunity!

Pruning can eliminate entire
subtrees!

24

47

min

48

x x

 x

min

-43>(-46)
No need to
look at this
subtree!

