
1

CSE 473

Lecture 5

 Heuristics

© CSE AI Faculty

Last Time: A* Search

• Use an evaluation function
f(n) for node n.
 f(n) = estimated total cost

of path thru n to goal

• f(n) = g(n) + h(n)
• g(n) = cost so far to

reach n

• h(n) = estimated cost
from n to goal

• Always choose the node
from frontier that has
the lowest f value.
 Frontier = priority queue

 2

Problem: Search for
shortest path from
start to goal

2

3

Admissible Heuristics

• A heuristic h(n) is admissible if

 for every node n,

 h(n) ≤ h*(n)

 where h*(n) is the true cost to reach the goal

state from n.

• An admissible heuristic never overestimates

the cost to reach the goal

Admissible Heuristics

• Is the Straight Line Distance heuristic hSLD(n)
admissible?

• Yes, it never overestimates the actual road distance

• Theorem: If h(n) is admissible, A* using TREE-

SEARCH is optimal.

4

3

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and
is in the frontier. Let n be an unexpanded node in the
frontier such that n is on a shortest path to an optimal
goal G.

f(G) = g(G) since h(G) = 0
f(G2) = g(G2) since h(G2) = 0
g(G) < g(G2) since G2 is suboptimal
f(G) < f(G2) from above

5

Optimality of A* (cont.)

f(G) < f(G2) from prev slide
h(n) ≤ h*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n) = f(G)
f(n) ≤ f(G) < f(G2)

Hence f(n) < f(G2)  A* will select n and never G2 for
expansion.

6

4

7

Optimality of A* for Graph Search

• A heuristic h(n) is consistent if

 for every node n and every successor n’ generated

by an action a,

 h(n) ≤ c(n,a,n’) + h(n’)

 (general triangle inequality)

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH

is optimal.

 (see text for proof)

• Most admissible heuristics turn out to be consistent too
 E.g. SLD is a consistent heuristic for the route problem (prove it!)

h(n)
c(n,a,n’)

h(n’)

n

n’
Gn

8

Okay, enough theory…
time to wake up!

5

9

Properties of A*

• Complete? Yes (unless there are infinitely
many nodes with f ≤ f(G))

• Time? Exponential worst case but may be
faster in many cases

• Space? Exponential: Keeps all generated
nodes in memory (exponential # of nodes)

• Optimal? Yes

A* vs. Uniform Cost Search

• Both are optimal but differ in search
strategy and time/space complexity

• A* uses f(n) = g(n) + h(n) to find shortest
path to a single goal

• Uniform cost search uses f(n) = g(n) to find
shortest path to a single goal

10

6

A* vs. Uniform Cost Search

• A* expands mainly toward
the goal with the help of
the heuristic function

• Uniform-cost expands
uniformly in all directions

• A* can be more efficient
(i.e., expands fewer nodes)
if the heuristic is good

11

Start Goal

Start Goal

A*

UC

Uniform Cost Pac-Man

12

7

A* Pac-Man with Manhattan distance
heuristic

13

14

Let’s explore heuristic functions

For the 8-puzzle (get to goal state with
smallest # of moves), what are some
heuristic functions?

• h1(n) = ?
• h2(n) = ?

8

15

Example heuristic functions

Examples:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares

from desired location of each tile)

• h1(S) = ?
• h2(S) = ?

S G

16

Example heuristics

Examples:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares

from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

• Are these admissible heuristics?

9

17

Dominance

• If h2(n) ≥ h1(n) for all n (both
admissible) then h2 dominates h1

• h2 is better for search (why?)
 Getting closer to the actual cost to goal

• Does one dominate the other for:
 h1(n) = number of misplaced tiles
 h2(n) = total Manhattan distance

18

Dominance

• For 8-puzzle heuristics h1 and h2, typical search
costs (average number of nodes expanded for
solution depth d):

• d=12 IDS = 3,644,035 nodes

 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

• d=24 IDS = too many nodes to fit in memory
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

10

For many problems, A* can still
require too much memory

19

20

Iterative-Deepening A* (IDA*)
• Less memory required compared to A*
• Like iterative-deepening search, but...
• Depth bound modified to be an f-limit

 Start with limit = h(start)
 Prune any node if f(node) > f-limit
 Next f-limit=min-cost of any node pruned

a

b

c

d

e

f

f-L=15

f-L=21

f-L=32

11

That’s cool yo but howdya
derive ‘em heuristic

functions?

Just relax, bro!

22

Relaxed Problems

• Derive admissible heuristic from exact cost
of a solution to a relaxed version of problem

 For route planning, what is a relaxed problem?

• Cost of optimal soln to relaxed problem 

 cost of optimal soln for real problem

Relax requirement that car has to stay on road
 Straight Line Distance becomes optimal cost

12

23

Heuristics for eight puzzle

7 2 3

8 4

5 1 6
1 2 3

7 8

4 5 6

start goal



• What can we relax?

24

Heuristics for eight puzzle
7 2 3

8 4

5 1 6
1 2 3

7 8

4 5 6


Original: Tile can move from location A to B if A is
horizontally or vertically next to B and B is blank

Relaxed 1: Tile can move from any loc A to any loc B

 Cost = h1 = number of misplaced tiles

Relaxed 2: Tile can move from loc A to loc B if A is
horizontally or vertically next to B

 Cost = h2 = total Manhattan distance

13

25

Need for Better Heuristics

Performance of h2 (Manhattan Distance Heuristic)

 8 Puzzle < 1 second

 15 Puzzle 1 minute

 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation

26

Creating New Heuristics

• Given admissible heuristics h1, h2, …, hm,
none of them dominating any other, how to
choose the best?

• Answer: No need to choose only one! Use:

 h(n) = max {h1(n), h2(n), …, hn(n)}
• h is admissible (prove it!)

• h dominates each individual hi (by construction)

14

27

Pattern Databases [Culberson & Schaeffer 1996]

• Idea: Use solution cost of a subproblem
as heuristic.

• For 8-puzzle: pick any subset of tiles

• E.g., 3 tiles

• Precompute a table
Compute optimal cost of solving just these tiles

• This is a lower bound on actual cost with all
tiles

Search backwards from goal and record cost of
each new pattern encountered

• State = position of just these tiles & blank

• Admissible heuristic hDB for complete state
= cost of corresponding sub-problem state
in database

Adapted from Richard Korf presentation

* * 3

* *

2 1 *

1 2 3

* *

* * *



28

Combining Multiple Databases

• Repeat for another subset of tiles
 Precompute multiple tables

• How to combine table values?
 Use the max trick!

• E.g. Optimal solutions to Rubik’s cube

 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (diff subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with 574,000 years for IDS

Adapted from Richard Korf presentation

15

29

Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values

• But not exceed the actual solution cost (admissible)
• How?

Adapted from Richard Korf presentation

30

Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table
 Don’t count moves of tiles not in set

• This makes sure costs are disjoint
• Can be added without overestimating!
• E.g. 8 tile DB has 519 million entries
• And 7 tile DB has 58 million

• During search
 Look up costs for each set in DB
 Add values to get heuristic function value

 Manhattan distance is a special case of this idea

where each set is a single tile
Adapted from Richard Korf presentation

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

16

31

Performance of Disjoint PDBs

• 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs solves 15 Puzzle optimally

in 30 milliseconds

• 24 Puzzle: 12 millionx speedup vs Manhattan
 IDA* can solve random instances in 2 days
 Uses DBs for 4 disjoint sets as shown
 Each DB has 128 million entries
 Without PDBs: 65,000 years

Adapted from Richard Korf presentation

32

Next Time

• Local search
• Gaming search and searching for Games
• To do: Project #1, Read Sec. 4.1, Chap. 5

