
1

CSE 473

Lecture 5

 Heuristics

© CSE AI Faculty

Last Time: A* Search

• Use an evaluation function
f(n) for node n.
 f(n) = estimated total cost

of path thru n to goal

• f(n) = g(n) + h(n)
• g(n) = cost so far to

reach n

• h(n) = estimated cost
from n to goal

• Always choose the node
from frontier that has
the lowest f value.
 Frontier = priority queue

 2

Problem: Search for
shortest path from
start to goal

2

3

Admissible Heuristics

• A heuristic h(n) is admissible if

 for every node n,

 h(n) ≤ h*(n)

 where h*(n) is the true cost to reach the goal

state from n.

• An admissible heuristic never overestimates

the cost to reach the goal

Admissible Heuristics

• Is the Straight Line Distance heuristic hSLD(n)
admissible?

• Yes, it never overestimates the actual road distance

• Theorem: If h(n) is admissible, A* using TREE-

SEARCH is optimal.

4

3

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and
is in the frontier. Let n be an unexpanded node in the
frontier such that n is on a shortest path to an optimal
goal G.

f(G) = g(G) since h(G) = 0
f(G2) = g(G2) since h(G2) = 0
g(G) < g(G2) since G2 is suboptimal
f(G) < f(G2) from above

5

Optimality of A* (cont.)

f(G) < f(G2) from prev slide
h(n) ≤ h*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n) = f(G)
f(n) ≤ f(G) < f(G2)

Hence f(n) < f(G2) A* will select n and never G2 for
expansion.

6

4

7

Optimality of A* for Graph Search

• A heuristic h(n) is consistent if

 for every node n and every successor n’ generated

by an action a,

 h(n) ≤ c(n,a,n’) + h(n’)

 (general triangle inequality)

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH

is optimal.

 (see text for proof)

• Most admissible heuristics turn out to be consistent too
 E.g. SLD is a consistent heuristic for the route problem (prove it!)

h(n)
c(n,a,n’)

h(n’)

n

n’
Gn

8

Okay, enough theory…
time to wake up!

5

9

Properties of A*

• Complete? Yes (unless there are infinitely
many nodes with f ≤ f(G))

• Time? Exponential worst case but may be
faster in many cases

• Space? Exponential: Keeps all generated
nodes in memory (exponential # of nodes)

• Optimal? Yes

A* vs. Uniform Cost Search

• Both are optimal but differ in search
strategy and time/space complexity

• A* uses f(n) = g(n) + h(n) to find shortest
path to a single goal

• Uniform cost search uses f(n) = g(n) to find
shortest path to a single goal

10

6

A* vs. Uniform Cost Search

• A* expands mainly toward
the goal with the help of
the heuristic function

• Uniform-cost expands
uniformly in all directions

• A* can be more efficient
(i.e., expands fewer nodes)
if the heuristic is good

11

Start Goal

Start Goal

A*

UC

Uniform Cost Pac-Man

12

7

A* Pac-Man with Manhattan distance
heuristic

13

14

Let’s explore heuristic functions

For the 8-puzzle (get to goal state with
smallest # of moves), what are some
heuristic functions?

• h1(n) = ?
• h2(n) = ?

8

15

Example heuristic functions

Examples:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares

from desired location of each tile)

• h1(S) = ?
• h2(S) = ?

S G

16

Example heuristics

Examples:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares

from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

• Are these admissible heuristics?

9

17

Dominance

• If h2(n) ≥ h1(n) for all n (both
admissible) then h2 dominates h1

• h2 is better for search (why?)
 Getting closer to the actual cost to goal

• Does one dominate the other for:
 h1(n) = number of misplaced tiles
 h2(n) = total Manhattan distance

18

Dominance

• For 8-puzzle heuristics h1 and h2, typical search
costs (average number of nodes expanded for
solution depth d):

• d=12 IDS = 3,644,035 nodes

 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

• d=24 IDS = too many nodes to fit in memory
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

10

For many problems, A* can still
require too much memory

19

20

Iterative-Deepening A* (IDA*)
• Less memory required compared to A*
• Like iterative-deepening search, but...
• Depth bound modified to be an f-limit

 Start with limit = h(start)
 Prune any node if f(node) > f-limit
 Next f-limit=min-cost of any node pruned

a

b

c

d

e

f

f-L=15

f-L=21

f-L=32

11

That’s cool yo but howdya
derive ‘em heuristic

functions?

Just relax, bro!

22

Relaxed Problems

• Derive admissible heuristic from exact cost
of a solution to a relaxed version of problem

 For route planning, what is a relaxed problem?

• Cost of optimal soln to relaxed problem

 cost of optimal soln for real problem

Relax requirement that car has to stay on road
 Straight Line Distance becomes optimal cost

12

23

Heuristics for eight puzzle

7 2 3

8 4

5 1 6
1 2 3

7 8

4 5 6

start goal

• What can we relax?

24

Heuristics for eight puzzle
7 2 3

8 4

5 1 6
1 2 3

7 8

4 5 6

Original: Tile can move from location A to B if A is
horizontally or vertically next to B and B is blank

Relaxed 1: Tile can move from any loc A to any loc B

 Cost = h1 = number of misplaced tiles

Relaxed 2: Tile can move from loc A to loc B if A is
horizontally or vertically next to B

 Cost = h2 = total Manhattan distance

13

25

Need for Better Heuristics

Performance of h2 (Manhattan Distance Heuristic)

 8 Puzzle < 1 second

 15 Puzzle 1 minute

 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation

26

Creating New Heuristics

• Given admissible heuristics h1, h2, …, hm,
none of them dominating any other, how to
choose the best?

• Answer: No need to choose only one! Use:

 h(n) = max {h1(n), h2(n), …, hn(n)}
• h is admissible (prove it!)

• h dominates each individual hi (by construction)

14

27

Pattern Databases [Culberson & Schaeffer 1996]

• Idea: Use solution cost of a subproblem
as heuristic.

• For 8-puzzle: pick any subset of tiles

• E.g., 3 tiles

• Precompute a table
Compute optimal cost of solving just these tiles

• This is a lower bound on actual cost with all
tiles

Search backwards from goal and record cost of
each new pattern encountered

• State = position of just these tiles & blank

• Admissible heuristic hDB for complete state
= cost of corresponding sub-problem state
in database

Adapted from Richard Korf presentation

* * 3

* *

2 1 *

1 2 3

* *

* * *

28

Combining Multiple Databases

• Repeat for another subset of tiles
 Precompute multiple tables

• How to combine table values?
 Use the max trick!

• E.g. Optimal solutions to Rubik’s cube

 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (diff subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with 574,000 years for IDS

Adapted from Richard Korf presentation

15

29

Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values

• But not exceed the actual solution cost (admissible)
• How?

Adapted from Richard Korf presentation

30

Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table
 Don’t count moves of tiles not in set

• This makes sure costs are disjoint
• Can be added without overestimating!
• E.g. 8 tile DB has 519 million entries
• And 7 tile DB has 58 million

• During search
 Look up costs for each set in DB
 Add values to get heuristic function value

 Manhattan distance is a special case of this idea

where each set is a single tile
Adapted from Richard Korf presentation

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

16

31

Performance of Disjoint PDBs

• 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs solves 15 Puzzle optimally

in 30 milliseconds

• 24 Puzzle: 12 millionx speedup vs Manhattan
 IDA* can solve random instances in 2 days
 Uses DBs for 4 disjoint sets as shown
 Each DB has 128 million entries
 Without PDBs: 65,000 years

Adapted from Richard Korf presentation

32

Next Time

• Local search
• Gaming search and searching for Games
• To do: Project #1, Read Sec. 4.1, Chap. 5

