CSE 473

Lecture 5

Last Time: A* Search

- Use an evaluation function $f(n)$ for node n.
$f(n)=$ estimated total cost of path thru n to goal
- $f(n)=g(n)+h(n)$
- $g(n)=$ cost so far to reach n
- $h(n)=$ estimated cos \dagger from n to goal
- Always choose the node

Problem: Search for shortest path from start to goal

from frontier that has
the lowest f value.
Frontier = priority queue

Admissible Heuristics

- A heuristic $\boldsymbol{h}(\boldsymbol{n})$ is admissible if for every node n,

$$
h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to reach the goal state from n.

- An admissible heuristic never overestimates the cost to reach the goal

Admissible Heuristics

- Is the Straight Line Distance heuristic $h_{S L D}(n)$ admissible?
- Yes, it never overestimates the actual road distance

- Theorem: If $h(n)$ is admissible, A^{*} using TREESEARCH is optimal.

Optimality of A* (proof)

Suppose some suboptimal goal G_{2} has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

$f(G)=g(G) \quad$ since $h(G)=0$
$f\left(G_{2}\right)=g\left(G_{2}\right) \quad$ since $h\left(G_{2}\right)=0$
$g(G)<g\left(G_{2}\right) \quad$ since G_{2} is suboptimal
$f(G)<f\left(G_{2}\right) \quad$ from above

Optimality of A* (cont.)

$f(G)<f\left(G_{2}\right)$ from prev slide
$h(n) \leq h *(n)$ since h is admissible
$g(n)+h(n) \leq g(n)+h^{*}(n)=f(G)$
$f(n) \leq f(G)<f\left(G_{2}\right)$
Hence $f(n)<f\left(G_{2}\right) \Rightarrow A^{*}$ will select n and never G_{2} for expansion.

Optimality of A* for Graph Search

- A heuristic $h(n)$ is consistent if
for every node n and every successor n ' generated by an action a,
$h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$ (general triangle inequality)

- Theorem: If $h(n)$ is consistent, A* using GRAPH-SEARCH is optimal.
(see text for proof)
- Most admissible heuristics turn out to be consistent too
E.g. SLD is a consistent heuristic for the route problem (prove it!)

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with $f \leq f(G)$)
- Time? Exponential worst case but may be faster in many cases
- Space? Exponential: Keeps all generated nodes in memory (exponential \# of nodes)
- Optimal? Yes

A* vs. Uniform Cost Search

- Both are optimal but differ in search strategy and time/space complexity
- A^{*} uses $f(n)=g(n)+h(n)$ to find shortest path to a single goal
- Uniform cost search uses $f(n)=g(n)$ to find shortest path to a single goal

A* vs. Uniform Cost Search

- A^{*} expands mainly toward the goal with the help of the heuristic function
- Uniform-cost expands uniformly in all directions

- A^{*} can be more efficient
(i.e., expands fewer nodes)
if the heuristic is good

Uniform Cost Pac-Man

A* Pac-Man with Manhattan distance heuristic

Let's explore heuristic functions

For the 8-puzzle (get to goal state with smallest \# of moves), what are some heuristic functions?

- $h_{l}(n)=$?
- $h_{2}(n)=$?

Start State

Goal State

Example heuristic functions

Examples:

- $h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance (no. of squares from desired location of each tile)
- $h_{1}(S)=$?
- $\underline{h}_{2}^{-}(S)=$?

Start State
S

Goal State
G

Example heuristics

Examples:

- $h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance (no. of squares from desired location of each tile)
- $h_{1}(S)=? 8$

Start State

- $\underline{h}_{2}^{-}(S)=? 3+1+2+2+2+3+3+2=18$
- Are these admissible heuristics?

Dominance

- If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1}
- h_{2} is better for search (why?)

Getting closer to the actual cost to goal

- Does one dominate the other for: $h_{1}(n)=$ number of misplaced tiles $h_{2}(n)=$ total Manhattan distance

Dominance

- For 8-puzzle heuristics h_{1} and h_{2}, typical search costs (average number of nodes expanded for solution depth d):
- $d=12$ IDS $=3,644,035$ nodes $A^{*}\left(h_{1}\right)=227$ nodes $A^{*}\left(h_{2}\right)=73$ nodes
- $d=24$ IDS $=$ too many nodes to fit in memory $A^{*}\left(h_{1}\right)=39,135$ nodes $A^{*}\left(h_{2}\right)=1,641$ nodes

For many problems, A^{*} can still require too much memory

Iterative-Deepening A* (IDA*)

- Less memory required compared to A^{*}
- Like iterative-deepening search, but...
- Depth bound modified to be an f-limit

Start with limit = h(start)
Prune any node if f (node) $>f$-limit
Next f-limit=min-cost of any node pruned

Relaxed Problems

- Derive admissible heuristic from exact cost of a solution to a relaxed version of problem

For route planning, what is a relaxed problem?
Relax requirement that car has to stay on road \rightarrow Straight Line Distance becomes optimal cost

- Cost of optimal soln to relaxed problem \leq cost of optimal soln for real problem

Heuristics for eight puzzle

7 2 3 5 1 6 8 4 \rightarrow1 2 3 4 5 6 7 8 start	
goal	

-What can we relax?

\section*{Heuristics for eight puzzle
 | 7 | 2 | 3 |
| :--- | :--- | :--- |
| 5 | 1 | 6 |
| 8 | 4 | |
 | 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | 5 | 6 |
| 7 | 8 | |}

Original: Tile can move from location A to B if A is horizontally or vertically next to B and B is blank
Relaxed 1: Tile can move from any loc A to any loc B Cost $=h_{1}=$ number of misplaced tiles
Relaxed 2: Tile can move from loc A to loc B if A is horizontally or vertically next to B Cost $=h_{2}=$ total Manhattan distance

Need for Better Heuristics

Performance of h_{2} (Manhattan Distance Heuristic) 8 Puzzle < 1 second 15 Puzzle 1 minute 24 Puzzle 65000 years

Can we do better?

Creating New Heuristics

- Given admissible heuristics $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{m}}$, none of them dominating any other, how to choose the best?
- Answer: No need to choose only one! Use:

$$
h(n)=\max \left\{h_{1}(n), h_{2}(n), \ldots, h_{n}(n)\right\}
$$

- h is admissible (prove it!)
- h dominates each individual h_{i} (by construction)

- Idea: Use solution cost of a subproblem as heuristic.
- For 8-puzzle: pick any subset of tiles
- E.g., 3 tiles

$*$	\star	3
2	1	\star
${ }^{*}$	\star	

- Precompute a table Compute optimal cost of solving just these tiles
- This is a lower bound on actual cost with all tiles
Search backwards from goal and record cost of
 each new pattern encountered
- State = position of just these tiles \& blank
- Admissible heuristic h_{DB} for complete state = cost of corresponding sub-problem state in database

Combining Multiple Databases

- Repeat for another subset of tiles Precompute multiple tables
- How to combine table values?

Use the maxtrick!

- E.g. Optimal solutions to Rubik's cube

First found w/ IDA* using pattern DB heuristics Multiple DBs were used (diff subsets of cubies) Most problems solved optimally in 1 day Compare with 574,000 years for IDS

Drawbacks of Standard Pattern DBs

- Since we can only take max Diminishing returns on additional DBs
- Would like to be able to add values
- But not exceed the actual solution cost (admissible)
- How?

Disjoint Pattern DBs

- Partition tiles into disjoint sets

For each set, precompute table
Don't count moves of tiles not in se \dagger

- This makes sure costs are disjoint
- Can be added without overestimating!

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

- E.g. 8 tile DB has 519 million entries
- And 7 tile DB has 58 million
- During search

Look up costs for each set in DB
Add values to get heuristic function value
Manhattan distance is a special case of this idea where each set is a single tile

Performance of Disjoint PDBs

- 15 Puzzle: 2000x speedup vs Manhattan dist IDA* with the two DBs solves 15 Puzzle optimally in 30 milliseconds
- 24 Puzzle: 12 millionx speedup vs Manhattan
- IDA* can solve random instances in 2 days
- Uses DBs for 4 disjoint sets as shown
- Each DB has 128 million entries
- Without PDBs: 65,000 years

Next Time

- Local search
- Gaming search and searching for Games
- To do: Project \#1, Read Sec. 4.1, Chap. 5

