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CSE 473 
 

Lecture 5 
 

 Heuristics 

© CSE AI Faculty 

Last Time: A* Search 

• Use an evaluation function 
f(n) for node n. 
 f(n) = estimated total cost 

of path thru n to goal 

• f(n) = g(n) + h(n) 
• g(n) = cost so far to 

reach n 

• h(n) = estimated cost 
from n to goal 

• Always choose the node 
from frontier that has 
the lowest f value. 
 Frontier = priority queue 
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Problem: Search for 
shortest path from 
start to goal  
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Admissible Heuristics 

• A heuristic h(n) is admissible if  

 for every node n, 

   h(n) ≤ h*(n) 

 where h*(n) is the true cost to reach the goal 

state from n. 

 

• An admissible heuristic never overestimates 

the cost to reach the goal 

Admissible Heuristics 

• Is the Straight Line Distance heuristic hSLD(n) 
admissible?  

• Yes, it never overestimates the actual road distance 

 

 

 

 

 

 

• Theorem: If h(n) is admissible, A* using TREE-

SEARCH is optimal. 
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Optimality of A* (proof) 

Suppose some suboptimal goal G2 has been generated and 
is in the frontier. Let n be an unexpanded node in the 
frontier such that n is on a shortest path to an optimal 
goal G. 

 
 
 
 
 

 

 
f(G)   = g(G)  since h(G) = 0  
f(G2)  = g(G2) since h(G2) = 0  
g(G) < g(G2)   since G2 is suboptimal 
f(G) < f(G2)  from above  
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Optimality of A* (cont.) 
 
 
 
 
 
 
 

f(G) < f(G2)  from prev slide  
h(n)  ≤ h*(n) since h is admissible 
g(n) + h(n) ≤ g(n) + h*(n) = f(G)  
f(n) ≤ f(G) < f(G2)  
 
Hence f(n) < f(G2)  A* will select n and never G2 for 
expansion. 
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Optimality of A* for Graph Search 

• A heuristic h(n) is consistent if  

 for every node n and every successor n’ generated 

by an action a, 

 h(n) ≤  c(n,a,n’) + h(n’)      

    (general triangle inequality) 

 

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH 

is optimal. 

    (see text for proof) 

 

• Most admissible heuristics turn out to be consistent too 
 E.g. SLD is a consistent heuristic for the route problem (prove it!) 

 

h(n) 
c(n,a,n’)  

h(n’) 

n 

n’ 
Gn 
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Okay, enough theory… 
time to wake up! 
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Properties of A* 

• Complete? Yes (unless there are infinitely 
many nodes with f ≤ f(G) ) 
 

• Time? Exponential worst case but may be 
faster in many cases 
 

• Space? Exponential: Keeps all generated 
nodes in memory (exponential # of nodes) 
 

• Optimal? Yes 

A* vs. Uniform Cost Search 

• Both are optimal but differ in search 
strategy and time/space complexity 

• A* uses f(n) = g(n) + h(n) to find shortest 
path to a single goal 

• Uniform cost search uses f(n) = g(n)  to find 
shortest path to a single goal 
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A* vs. Uniform Cost Search 

• A* expands mainly toward 
the goal with the help of 
the heuristic function 
 

• Uniform-cost expands 
uniformly in all directions 
 

• A* can be more efficient 
(i.e., expands fewer nodes) 
if the heuristic is good 
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Start Goal 

Start Goal 

A* 

UC 

Uniform Cost Pac-Man 
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A* Pac-Man with Manhattan distance 
heuristic 
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Let’s explore heuristic functions 

For the 8-puzzle (get to goal state with 
smallest # of moves), what are some 
heuristic functions? 

• h1(n) = ? 
• h2(n) = ? 
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Example heuristic functions 

Examples: 
• h1(n) = number of misplaced tiles 
• h2(n) = total Manhattan distance (no. of squares 

from desired location of each tile) 
 

 
 
 
• h1(S) = ?  
• h2(S) = ?  

 

S G 
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Example heuristics 

Examples: 
• h1(n) = number of misplaced tiles 
• h2(n) = total Manhattan distance (no. of squares 

from desired location of each tile) 
 

 
 
• h1(S) = ? 8 
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18  

 
• Are these admissible heuristics? 



9 

17 

Dominance 

• If h2(n) ≥ h1(n) for all n (both 
admissible) then h2 dominates h1  

• h2 is better for search (why?) 
 Getting closer to the actual cost to goal 

 

• Does one dominate the other for: 
 h1(n) = number of misplaced tiles 
 h2(n) = total Manhattan distance 
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Dominance 

• For 8-puzzle heuristics h1 and h2, typical search 
costs (average number of nodes expanded for 
solution depth d): 

 
• d=12 IDS = 3,644,035 nodes 

  A*(h1) = 227 nodes  
  A*(h2) = 73 nodes  

• d=24  IDS = too many nodes to fit in memory 
  A*(h1) = 39,135 nodes  
  A*(h2) = 1,641 nodes  
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For many problems, A* can still 
require too much memory 
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Iterative-Deepening A* (IDA*) 
• Less memory required compared to A* 
• Like iterative-deepening search, but... 
• Depth bound modified to be an f-limit 

 Start with  limit = h(start) 
 Prune any node if f(node) > f-limit 
 Next f-limit=min-cost of any node pruned 

a 

b 

c 

d 

e 

f 

f-L=15 

f-L=21 

f-L=32 
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That’s cool yo but howdya 
derive ‘em heuristic 

functions? 

Just relax, bro! 
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Relaxed Problems 

• Derive admissible heuristic from exact cost 
of a solution to a relaxed version of problem 

 

 For route planning, what is a relaxed problem? 

• Cost of optimal soln to relaxed problem   

 cost of optimal soln for real problem 

Relax requirement that car has to stay on road 
 Straight Line Distance becomes optimal cost  



12 

23 

Heuristics for eight puzzle 

7   2   3 

8   4 

5   1   6 
1   2   3 

7   8 

4   5   6 

start goal 

 

• What can we relax? 
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Heuristics for eight puzzle 
7   2   3 

8   4 

5   1   6 
1   2   3 

7   8 

4   5   6 
 

Original: Tile can move from location A to B if A is 
horizontally or vertically next to B and B is blank 

Relaxed 1: Tile can move from any loc A to any loc B 

 Cost = h1 = number of misplaced tiles 

Relaxed 2: Tile can move from loc A to loc B if A is 
horizontally or vertically next to B 

 Cost = h2 = total Manhattan distance 
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Need for Better Heuristics 

Performance of h2 (Manhattan Distance Heuristic) 

  8 Puzzle  < 1 second 

 15 Puzzle  1 minute 

 24 Puzzle  65000 years 

 

 

Can we do better? 

Adapted from Richard Korf presentation 
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Creating New Heuristics 

• Given admissible heuristics h1, h2, …, hm, 
none of them dominating any other, how to 
choose the best? 

• Answer: No need to choose only one! Use: 

  h(n) = max {h1(n), h2(n), …, hn(n)} 
• h is admissible (prove it!) 

• h dominates each individual hi (by construction) 
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Pattern Databases [Culberson & Schaeffer 1996] 

 

• Idea: Use solution cost of a subproblem 
as heuristic.  

• For 8-puzzle: pick any subset of tiles 

• E.g., 3 tiles 

• Precompute a table  
Compute optimal cost of solving just these tiles 

• This is a lower bound on actual cost with all 
tiles 

Search backwards from goal and record cost of 
each new pattern encountered 

• State = position of just these tiles & blank 

• Admissible heuristic hDB for complete state 
= cost of corresponding sub-problem state 
in database 

Adapted from Richard Korf presentation 

*   *   3 

*   * 

2   1   * 

1  2   3 

*   * 

*   *   * 


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Combining Multiple Databases 

• Repeat for another subset of tiles 
 Precompute multiple tables 

• How to combine table values? 
 Use the max trick! 

 
• E.g. Optimal solutions to Rubik’s cube 

 First found w/ IDA* using pattern DB heuristics 
 Multiple DBs were used (diff subsets of cubies) 
 Most problems solved optimally in 1 day 
 Compare with 574,000 years for IDS 

Adapted from Richard Korf presentation 
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Drawbacks of Standard Pattern DBs 

• Since we can only take max 
 Diminishing returns on additional DBs 

 
• Would like to be able to add values 

• But not exceed the actual solution cost (admissible) 
• How? 

Adapted from Richard Korf presentation 
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Disjoint Pattern DBs 

• Partition tiles into disjoint sets 
 For each set, precompute table 
 Don’t count moves of tiles not in set 

• This makes sure costs are disjoint 
• Can be added without overestimating! 
• E.g. 8 tile DB has 519 million entries 
• And 7 tile DB has 58 million 

• During search 
 Look up costs for each set in DB 
 Add values to get heuristic function value 

 
 Manhattan distance is a special case of this idea 

where each set is a single tile 
Adapted from Richard Korf presentation 

9  10  11 12 

13 14  15 

1   2   3   4 

5  6   7   8 
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Performance of Disjoint PDBs 

• 15 Puzzle:  2000x speedup vs Manhattan dist 
 IDA* with the two DBs solves 15 Puzzle optimally 

in 30 milliseconds 
 

• 24 Puzzle: 12 millionx speedup vs Manhattan  
 IDA* can solve random instances in 2 days 
 Uses DBs for 4 disjoint sets as shown  
 Each DB has 128 million entries 
 Without PDBs: 65,000 years 

Adapted from Richard Korf presentation 
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Next Time 

• Local search 
• Gaming search and searching for Games 
• To do: Project #1, Read Sec. 4.1, Chap. 5 

 


