

Data and the second second	- C	Jan the Cast	
Properties	OT	deptn-first	search
- roper ties	-	acpen moe	bear on

Complete??

Properties of depth-first search Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path (using "explored" set) ⇒ complete in finite spaces Time??

Properties of depth-first search

<u>Complete</u>?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path(using "explored" set) ⇒ complete in finite spaces

<u>Time</u>?? $O(b^m)$: terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

Space??

Properties of depth-first search

<u>Complete</u>?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path (using "explored" set) ⇒ complete in finite spaces

<u>Time</u>?? $O(b^m)$: terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Depth-limited search				
depth-fi	rst search with depth limit l			
e., nodes	at depth l have no successors (can handle infinite state spa			
ecursive	mplementation:			
function	DEPTH-LIMITED-SEARCH(<i>problem</i> , <i>limit</i>) returns soln/fail/cutoff			
RECU	RSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)			
function	RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff			
if Go.	occurred? ← talse u-TEST[nrohlem](STATE[node]) then return node			
else it	DEPTH[node] = limit then return cutoff			
else fe	or each successor in EXPAND(node, problem) do			
$r\epsilon$	$sult \leftarrow \text{Recursive-DLS}(successor, problem, limit)$			
if	$result = cutoff$ then $cutoff$ -occurred? \leftarrow true			
	se if $result \neq failure$ then return $result$			
el				

Properties of iterative deepening search

Complete?? Yes

 $db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$

Space?? O(bd)

Optimal??

Time??

First	Cost	First	Limited	Iterative Deepening
Yes*	Yes*	No	Yes, if $l \ge d$	Yes
b^d	$b^{\lceil C^*/\epsilon \rceil}$	b^m	b^l	b^d
b^d	$b^{\lceil C^*/\epsilon \rceil}$	bm	bl	bd
Yes*	Yes*	No	No	Yes
	${f Yes}^*$ b^d b^d ${f Yes}^*$	$\begin{array}{ccc} {\sf Yes}^* & {\sf Yes}^* \\ b^d & b^{\lceil C^*/\epsilon\rceil} \\ b^d & b^{\lceil C^*/\epsilon\rceil} \\ {\sf Yes}^* & {\sf Yes}^* \end{array}$	$\begin{array}{c c} {\sf Yes}^* & {\sf Yes}^* & {\sf No} \\ b^d & b^{\lceil C^*/\epsilon\rceil} & b^m \\ b^d & b^{\lceil C^*/\epsilon\rceil} & bm \\ {\sf Yes}^* & {\sf Yes}^* & {\sf No} \end{array}$	$\begin{array}{c cccc} {\sf Yes}^* & {\sf Yes}^* & {\sf No} & {\sf Yes, if } l \geq d \\ b^d & b^{\lceil C^*/\epsilon\rceil} & b^m & b^l \\ b^d & b^{\lceil C^*/\epsilon\rceil} & bm & bl \\ {\sf Yes}^* & {\sf Yes}^* & {\sf No} & {\sf No} \end{array}$

