CSE 473
Lecture 4

Informed Search

© CSE Al Faculty

Last Time

Blind (Uninformed) Search
Tree Search and Graph Search
BFS
UC-BFS
DFS
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| Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path (using “explored” set)

= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d

but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!
Optimal?? No
Space cost is a big advantage of DFS over BFS.

Example: b = 10 with 1000 Bytes/node
d =16 =» 156 KB instead of 10 EB (1 billion GB)

| Depth-limited search

= depth-first search with depth limit [,

i.e., nodes at depth [ have no successors (can handle infinite state spaces)

Recursive implementation:

function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail /cutoff
RECURSIVE—DLS(I\’IAKE—NODE(INITIAL—STATE[pT‘Oblem])’problem limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? +false
if GOAL-TEST[problem](STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «+— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure
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| Iterative deepening search I

function ITERATIVE-DEEPENING-SEARCH( Problem) returns a solution
inputs: problem, a problem

for depth+ 0 to oo do
result < DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result

end

» DFS with increasing depth limit
* Finds the best depth limit
* Combines the benefits of DFS and BFS
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I Iterative deepening search [ =3

| Properties of iterative deepening search

Complete??
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I Properties of iterative deepening search I

Complete?? Yes
Time?? db' + (d — )b + ... + b = O(b%)
Space?? O(bd)

Optimal?? Yes if all stepcostsare equal. Not optimal in general.
Can be modified to explore uniform-cost tree

Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.17)
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Summary of algorithms

Criterion Breadth-  Uniform-  Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if { > d Yes
Time b? bIC*/el b b b?
Space b bIC/el bm bl bd
Optimal? Yes* Yes* No No Yes

31

Forwards vs. Backwards Search

32
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Bidirectional Search

G SV

e T

Motivation: Search time b92 + pd/2 << pd

(E.g., 108+108 =2.108<< 1016)

Can use breadth-first search or uniform-cost search
Hard for implicit goals e.g., goal = “checkmate” in chess

33

Can we do better?

Can we use problem-specific
knowledge to speed up search
and maintain optimality?

34
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Informed Search

General search problem: Actions have different costs

« \Want to minimize total cost from start to goal
Not just minimizing path cost like Uniform-cost search
* ldea: Use problem-specific knowledge to guide search
by using “heuristic function”

35

Best-first Search

Generalization of breadth first search
Priority queue of nodes to be explored
Evaluation function f (n) used for each node

Insert initial state into priority queue
While queue not empty

Node = head(queue)

If goal(node) then return node

Insert children of node into pr. queue

36
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Who’s on (best) first?

Examples of best-first search:
* Breadth-first search is best-first
With f(n) = depth(n)

» Uniform-cost search is best-first
With f(n) = g(n)
where g(n) = path cost (sum of edge costs from start to n)

37

Greedy best-first search

 Use a heuristic evaluation function f(n) = h(n) = estimate
of cost from n to goal

* E.g., hg p(n) = straight-line distance from n to destination

» Greedy best-first search expands the node that appears to
be closest to goal

38
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Lost in Romania

h(n)= SLD to
Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161

176
99 Fagaras 77
Hirsova 151
Tasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
[] Hirsova Piﬁe I e 100
Rimnicu Vileea 193
86 Sibiu 253
Timisoara 329
Dobreta [J Urziceni 80
o Eforie Vaslui 199
[] Giurgiu Zerind 374
end
39

Example: Greedily Searching for Bucharest

365
N hg p(Arad)
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Example: Greedily Searching for Bucharest
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Example: Greedily Searching for Bucharest
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Example: Greedily Searching for Bucharest
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doesn’t

= greedy SLD-based search
pay!

is NOT optimal!
Blue = optimal (418 versus )
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Properties of Greedy Best-First Search
« Complete? No — can get stuck in loops (unless
we keep an “explored” set)

« Time? O(b™), but a good heuristic can give
dramatic improvement

« Space? O(b™) (nodes in priority queue +
explored set)

« Optimal? No, as our example illustrated

45

A* Search

(Hart, Nilsson & Rafael 1968)

Best first search with f(n) = g(n) + h(n)

g(n) = sum of edge costs from start to n
heuristic function h(n) = estimate of lowest cost path
from n to goal

If h(n) is “admissible” then tree-search will be optimal

\ Underestimates cost
of any solution which
can be reached from node

e.g., hsip(n)

46
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Back in Romania Again / aivwn"

merge

. din noul /

h(n)= SLD to
Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
176
7
Hirsova 151
Tasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
) Pitesti 100
[] Hirsova imnicu Vilcea 193
86 Sibiu 253
Timisoara 329
Dobreta [J Urziceni 80
o Eforie Vaslui 199
[] Giurgiu Zerind 374
end
47
A* Exampl
xample
b
366=0+366
f(n)=g(n)+h(n)
48
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A* Example

393=140+253 447=118+329 449=T5+374
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A* Example

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

B0
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A* Example

447=118+329 449=75+374

Oradea
646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

Al

A* Example

447=118+329 449=75+374

646=280+366

501=338+253  450=450+0 526=366+160 417=317+100 553=300+253

B2
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A* Example

447=118+329
646=280+366

591=338+253 450=450+0 526=366+160

553=300+253

418=418+0 615=455+160 607=414+193

449=75+374

Next Time
- More on A* and heuristic functions
To Do:
* Read Chapter 3
- Start Project #1
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