CSE 473
Chapter 3
Problem Solving using Search

(V) o) ¢
% W Ve
RN h&

/s

%) A
i

“First, they do an on-line search”

© CSE Al Faculty

Pac-Man as an Agent

SCORE:

The CSE 473 Pac-Man
Projects

Originally developed at UC Berkeley:
http://www-inst.eecs.berkeley.edu/~cs188/pacman/pacman.html

3

Project 1: Search
Goal:

* Help Pac-man
find its way
through the maze

Techniques:

* Search: breadth-
first, depth-first,
etc.

* Heuristic Search:
Best-first, A*, etc.

http://www-inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
http://www-inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
http://www-inst.eecs.berkeley.edu/~cs188/pacman/pacman.html

Project 2: Game Playing

Goal: Techniques:
Build a rational Adversarial Search: minimax,
Pac-Man agent! alpha-beta, expectimax, etc.

Project 3: Planning and
Learning

Goal: Techniques:
Help Pac-Man e pjanning: MDPs, Value Iteration
learn aboutits | earning: Reinforcement Learning
world

Project 4: Ghostbusters

Goal:

Help Pac-man hunt
down the ghosts

Techniques:

* Probabillistic
models: HMMs,
Bayes Nets

* Inference: State
estimation and
particle filtering

Problem Solving using Search
Example 1: The 8-puzzle

Start Goal

11213 112|3
8 4 |=—p |4 |5 |6
716|5 718

Example 2: Route Planning

Example 3: N Queens

™
™
™
|

4 Queens problem

(Place queens such that no queen attacks any other)

10

Example: N Queens

4 Queens

1

State-Space Search Problems

General problem:
Find a path from a start state to a goal state given:
» A goal test: Tests if a given state is a goal state

* A successor function (transition model): Given a state
and action, generate successor state

Variants:

 Find any path vs. a least-cost path (if each step has a
different cost i.e. a “step-cost™)

» Goal is completely specified, task is to find a path or
least-cost path

— Route planning

* Path doesn’t matter, only finding the goal state
— 8 puzzle, N queens, Rubik’s cube

12

Example: Simplified Pac-Man

Input:

) “N”, 1.0
» Successor function _
\

“E”, 1.0
» Start state H
» Goal test - .

Search Trees

“N”, y \“E:,, 1.0

A search tree: T T

 Root contains Start state

 Children = successor states

 Edges = actions and step-costs

* Path from Root to a node is a “plan” to get to that state

 For most problems, we can never actually build the
whole tree (why?)

State Space Graph versus Search Trees

State Space Graph

(graph of states with arrows pointing to successors)

State Space Graph versus Search Trees

Search Tree for 8-Puzzle

1123
8 4
7/6|5
1 3 1123 1123 1]2
8|24 84 8(6|4 8
7|65 7/6|5 7 5 7|6
13 13 1]2 1123 1123 112|3 2|3 3
8|24 8|24 814|3 8/4|5 8|6|4 8|64 184 4
7|65 7|6|5 7|6|5 76 7|5 7|5 7|6|5 5
813 1134 1 2 1123 1123 1123 2 3 3
24 8|2 814|3 8 4|5 6|4 8|6 184 4
7|65 7|6|5 7|6|5 7 6 8|7|5 7|54 7|6|5 5

17

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!
parent, action

State E El Node qepin=40
E E te g(x)=14.7
el

18

Searching with Search Trees

Search:
* Expand out possible nodes

* Maintain a fringe or frontier of as yet
unexpanded nodes

* Try to expand as few tree nodes as possible

I Implementation: general tree search [

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

<V

I Implementation: general tree search [

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe - INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors +— the empty set

for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
s¢—a new NODE
PARENT-NODE[s] - node; ACTION[s] ¢ action; STATE[s] ¢ result
PATH-COST[s] < PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «— DEPTH[node] + 1
add s to successors

return successors

21

Handling Repeated States

Failure to detect repeated states (e.g., in 8 puzzle) can cause

infinite loops in search

expand

expand a

Graph Search algorithm: Augment Tree-Search to store
expanded nodes in a set called explored set (or closed set)
and only add new nodes not in the explored set to the fringe

22

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be c0)

23

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

Iterative deepening search

Breadth-first search

|

Expand shallowest unexpanded node

fringe is a FIFO queue, i.e., new successors go at end

Implementation:

25

Breadth-first search

Expand shallowest unexpanded node

Implementation:
¥R X
4 ‘ s \
,'./ N\

T

(D) (E

fringe is a FIFO queue, i.e., new successors go at end

26

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

27

I Breadth-first search [

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4)
(B) (O
>bO ® ® ©

28

l Properties of breadth-first search |

Complete??

29

I Properties of breadth-first search [

Complete?? Yes (if b is finite)

Time??

30

I Properties of breadth-first search I

Complete?? Yes (if b is finite)

Time?? b+b? +b*+---+b? =0O(b") i.e. exp ind

Space??

31

I Properties of breadth-first search |

Complete?? Yes (if b is finite)
Time?” b+b* +b* +---+b? =O(b?) i.e. exp ind
Space?? O(bd)

Optimal??

32

I Properties of breadth-first search |

Complete?? Yes (if b is finite)

Time?? b+b%+b*+---+b? =O(b?) i.e. exp ind
Space?? O(b?)

Optimal?? Yes if all step costsare equal. Not optimal in general.
Space and time are big problems for BFS.

Example: b = 10 with 1,000,000 nodes/sec, 1000 Bytes/node

d =2 = 110 nodes, 0.11 millisecs, 107KB

d =4 < 11,110 nodes, 11 millisecs, 10.6 MB

d =8 =» 108 nodes, 2 minutes, 103 GB

d =16 =» 10% nodes, 350 years, 10 EB (1 billion GB)

33

What if the step costs are not
equal?

Can we modify BFS to handle any step
cost function?

34

I Uniform-cost search |

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost g(n) (Use priority queue)

Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost > €

Time?? # of nodes with g < cost of optimal solution, O(b_C /sJ+1)
where C'* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(bLC ISJH)

Optimal?? Yes—nodes expanded in increasing order of g(n)

35

Can we do better?
Next time: depth first search, depth limited search,
iterative deepening search, bidirectional search
All these methods are slow (because they are “blind”)

Solution => use problem-specific knowledge to
guide search (“heuristic function”)
= “informed search” (next lecture)

To Do
» Start Project #1

+ Read Chapter 3

36

