CSE 473 Artificial Intelligence (AI)

Rajesh Rao (Instructor) Yi-Shu Wei (TA) Hunter Whalen (TA)

http://www.cs.washington.edu/473

Based on slides by UW CSE AI faculty, Dan Klein, Stuart Russell, Andrew Moore

Outline

- Goals of this course
- Logistics
- What is AI?
- Examples
- Challenges

CSE 473 Goals

- To introduce you to a set of key:
 - -Concepts &
 - -Techniques in AI
- Teach you to identify when & how to use
 - -Heuristic search for problem solving and games
 - -Logic for knowledge representation and reasoning
 - -Probabilistic inference for reasoning under uncertainty
 - –Machine learning (for pretty much everything)

CSE 473 Logistics

- E-mail:
 - Rajesh Rao Yi-Shu Wei Hunter Whalen

rao@cs yishuwei@uw.edu hwhalen@cs

50%

20%

30%

Stuart Russell

Peter Norvia

- Required Textbook
 - Russell & Norvig's "AIMA3"
- Grading:
 - Homeworks and projects
 - Midterm
 - Final
- Midterm on Monday, October 28, in class (closed book, except for one 8 ¹/₂" x 11"page of notes)

Artificial Intelligence

A Modern Approach

Third Edition

CSE 473 Topics

- Overview, agents, environments (Chaps 1 and 2)
- Search (Chaps 3 and 5)
- Knowledge representation and logic (Chaps 7-9)
- Uncertainty & Bayesian networks (Selected topics from Chaps 13-15 and 17)
- Machine Learning: Learning from examples (Chap 18)
- Machine Learning: Reinforcement learning (Chap 21)

AI as Science

Physics: Where did the *physical universe* come from and what laws guide its dynamics?

Biology: How did *biological life* evolve and how do living organisms function?

AI: What is the nature of "*intelligence*" and what constitutes intelligent behavior?

AI as Engineering

- How can we make software and robotic devices more powerful, adaptive, and easier to use?
- Examples:
 - Speech recognition
 - Natural language understanding
 - Computer vision and image understanding
 - Intelligent user interfaces
 - Data mining
 - Mobile robots, softbots, humanoids
 - Brain-computer interfaces...

Hardware

10¹¹ neurons 10¹⁴ synapses cycle time: 10⁻³ sec (1 kHz)

10¹⁰ transistors 10¹² bits of RAM (125 GB) cycle time: 10⁻¹⁰ sec (10 GHz)

Computer vs. Brain

(from Moravec, 1998)

9

Evolution of Computers

(from Moravec, 1998)

Projection

- In near future (~2020) computers will
 - -become cheap enough and have enough processing power and memory capacity to *match the general intellectual performance of the human brain*

But...what "software" does the human brain run?
Very much an open question

What is AI?

Defining AI

	human-like	rational
thought	Systems that think like humans	Systems that think rationally
behavior	Systems that act like humans	Systems that act rationally

Rational: maximally achieving pre-defined goals

AI Prehistory

- Logical Reasoning: (4th C BC+) Aristotle, George Boole, Gottlob Frege, Alfred Tarski
- Probabilistic Reasoning: (16th C+) Gerolamo Cardano, Pierre Fermat, James Bernoulli, Thomas Bayes

1940-1950: The Early Days

- •1943: McCulloch & Pitts: Boolean circuit model of brain
- •1950: Turing's "Computing Machinery and Intelligence"

I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be framed...

-Alan Turing

The Turing Test

- Turing (1950) "Computing machinery and intelligence"
 - "Can machines think?" \rightarrow "Can machines interact intelligently?"
 - The Human Interaction Game:

- Suggested major components of AI: knowledge, reasoning, language understanding, learning
- Missing: Physical interactions with the real-world

1950-1965: Excitement

- 1950s: Early Al programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956: Dartmouth meeting: "Artificial Intelligence" adopted
- 1965: Robinson's complete algorithm for logical reasoning

"Over Christmas, Allen Newell and I created a thinking machine."

-Herbert Simon

Battle for the Soul of AI

- Minsky & Papert (1969) *Perceptrons* book
 - Single-layer neural networks cannot learn XOR
 - Argued against neural nets in general
- Backpropagation learning algorithm
 - Invented in 1969 and again in 1974
 - Hardware too slow, until rediscovered in 1985
- Research funding for neural nets disappears
- Rise of knowledge based systems

1970-1980: Knowledge Based Systems

- 1969-79: Early development of knowledge-based systems
- 1980-88: Expert systems industry booms
- 1988-93: Expert systems industry busts "AI Winter"

1988-present: Statistical Approaches

 1985-1990: Probability and Decision Theory become dominant

Pearl, Bayes Nets

- 1990-2000: Machine learning takes over subfields: Vision, Natural Language, etc.
- Agents, uncertainty, and learning systems... "AI Spring"?

"Every time I fire a linguist, the performance of the speech recognizer goes up" -*Fred Jelinek*, IBM Speech Team

Pop Quiz

Which of the following can be done by AI systems today?

- Play a decent game of Soccer?
- Defeat a human in a game of Chess? Go? Jeopardy?
- Drive a car safely along a curving mountain road? On University Way?
- Buy a week's worth of groceries on the Web? At QFC?
- Make a car? Make a cake in your kitchen?
- Discover and prove a new mathematical theorem?
- Perform a heart bypass surgery?
- Unload a dishwasher and put everything away?
- Translate Mandarin Chinese into English in real time?

Examples: Chess (Deep Blue, 1997)

"

I could feel – I could smell – a new kind of intelligence across the table"

-Gary Kasparov

Speech Recognition

Siri

Use your voice to send messages, set reminders, search for information, and more.

Navigation Systems

Automated call centers

Natural Language Understanding

- Speech Recognition
 - -"word spotting" feasible today
 - continuous speech limited success
- Machine Translation / Understanding

progress but not there yet

The spirit is willing but the flesh is weak. (English) The vodka is good but the meat is rotten. (Russian)

Mars Rovers (2003-now)

(See NASA website for latest updates) 25

Robots that Learn

Before Learning

Human Motion Capture

Attempted Imitation

Robots that Learn

Learning

After Learning

(Work by UW CSE PhD David Grimes) 27

Muscle-Activated Robotics

(Work by UW CSE undergrad Beau Crawford) 28

Brain-Computer Interfaces

(Work by UW MD-PhD Kai Miller) 29

Limitations of AI Systems Today

- Today's successful AI systems
 - -operate in well-defined domains
 - -employ narrow, specialized hard-wired knowledge
- Missing: Ability to
 - -Operate in complex, open-ended dynamic worlds
 - E.g., Your kitchen vs. GM factory floor
 - -Adapt to unforeseen circumstances
 - -Learn from new experiences
- In this class, we will explore some potentially useful techniques for tackling these problems

For You To Do

• Browse CSE 473 course web page

• Do Project 0: Python tutorial

• Read Chapters 1 and 2 in text

• Project 1 to be assigned on Monday