Artificial Intelligence Recap & Expectation Maximization **CSE 473**

Dan Weld

Exam Topics

- BFS, DFS, UCS, A* (tree and graph)
 Completeness and Optimality
 Heuristics: admissibility and
- consistency
- Constraint graphs, backtracking search
- Forward checking, AC3 constraint propagation, ordering heuristics
- Minimax, Alpha-beta pruning, Expectimax, Evaluation Functions
- - Bellman equationsValue iteration

- Reinforcement Learning
- **Exploration vs Exploitation**
- Model-based vs. model-free
- Q-learning Linear value function approx.
- Hidden Markov Models

 Markov chains
- Forward algorithm
- Particle Filter
 Bayesian Networks
- Basic definition, independenceVariable elimination
- Sampling (rejection, importance)
- Learning

 BN parameters with complete data
 Search thru space of BN structures
 Expectation maximization

What is intelligence?

- (bounded) Rationality
 - We have a performance measure to optimize
 - Given our state of knowledge
 - Choose optimal action
 - Given limited computational resources
- Human-like intelligence/behavior

Search in Discrete State Spaces

- Every discrete problem can be cast as a search problem.
 - states, actions, transitions, cost, goal-test
- Types
 - uninformed systematic: often slow
 - DFS, BFS, uniform-cost, iterative deepening
 - Heuristic-guided: better
 - Greedy best first, A*
 - · relaxation leads to heuristics
 - Local: fast, fewer guarantees; often local optimal
 - Hill climbing and variations
 - Simulated Annealing: global optimal
 - (Local) Beam Search

Which Algorithm? A*, Manhattan Heuristic:

Adversarial Search

- AND/OR search space (max, min)
- minimax objective function
- minimax algorithm (~dfs)
 - alpha-beta pruning
- Utility function for partial search
 - Learning utility functions by playing with itself
- Openings/Endgame databases

Knowledge Representation and Reasoning Representing: what I know Reasoning: what I can infer Uncertainty Prop Logic Constraint Sat Networks First-Order Logic ?

KR&R Example: Propositional Logic

- Representation: Propositional Logic Formula
 - CNF, Horn Clause,...
- Reasoning: Deduction
 - Forward Chaining
 - Resolution
- Model Finding
 - Enumeration
 - SAT Solving

Expressivity

- Propositional Logic vs Bayesian network?
- $(X \wedge Y) \vee (\neg X \wedge \neg Y)$

Search+KR&R Example: CSP

- Representation
 - Variables, Domains, Constraints
- Reasoning: Constraint Propagation
 - Node consistency, Arc Consistency, k-Consistency
- Search
 - Backtracking search: partial var assignments
 - Heuristics: min remaining values, min conflicts
 - Local search: complete var assignments

Search+KR&R Example: SAT Solving

- Representation: CNF Formula
- Reasoning
 - pure literals; unit clauses; unit propagation
- Search
 - DPLL (~ backtracking search)
 MOM's heuristic
 - Local: GSAT, WalkSAT
- Phase Transitions in SAT problems

Search+KR&R Example: Planning

- Representation: STRIPS
- Reasoning: Planning Graph
 - Polynomial data structure
 - reasons about constraints on plans (mutual exclusion)
- Search
 - Forward: state space search
 - planning graph based heuristic
 - Backward: subgoal space search
- Planning as SAT: SATPlan

KR&R: Markov Decision Process

- Representation
 - states, actions, probabilistic outcomes, rewards
 - ~AND/OR Graph (sum, max)
 - Generalization of expectimax
- Reasoning: V*(s)
 - Value Iteration: search thru value space

- Reinforcement Learning:
 - Exploration / exploitation
 - Learn model or learn Q-function?

KR&R: Probability

- Representation: Bayesian Networks
 - encode probability distributions compactly
 - by exploiting conditional independences

- Exact inference: var elimination
- Approx inference: sampling based methods
 - rejection sampling, likelihood weighting, MCMC/Gibbs

KR&R: Hidden Markov Models

- Representation
 - Spl form of BN
 - Sequence model
 - One hidden state, one observation
- Reasoning/Search
 - most likely state sequence: Viterbi algorithm
 - marginal prob of one state: forward-backward

Learning Bayes Networks

- Learning Structure of Bayesian Networks
 - Search thru space of BN structures
- Learning Parameters for a Bayesian Network
 - Fully observable variables
 - Maximum Likelihood (ML), MAP & Bayesian estimation
 - Example: Naïve Bayes for text classification
 - Hidden variables
 - Expectation Maximization (EM)

Applications of AI Mars rover: planning Jeopardy: NLP, info retrieval, machine learning Puzzles: search, CSP, logic Chess: search Web search: IR Text categorization: machine learning Self-driving cars: robotics, prob. reasoning, ML...

Ethics of Artificial Intelligence

- Robots
 - Robot Rights
 - Three Laws of Robotics
- Al replacing people jobs
 - Any different from industrial revolution?
- Ethical use of technology
 - Dynamite vs. Speech understanding
- Privacy concerns
 - Humans/Machines reading freely available data on Web
 - Gmail reading our news
- Al for developing countries/improving humanity

Exam Topics

- BFS, DFS, UCS, A* (tree and graph)
 Completeness and Optimality
 Heuristics: admissibility and
- consistency
- Constraint graphs, backtracking search
 Forward checking, AC3 constraint
 propagation, ordering heuristics
- Games

 Minimax, Alpha-beta pruning,
 Expectimax, Evaluation Functions
- MDPs
 - Bellman equationsValue iteration

- Reinforcement Learning

 Exploration vs Exploitation

 Model-based vs. model-free

 Q-learning

 Linear value function approx.

- Linear value function approx.
 Hidden Markov Models
 Markov chains
 Forward algorithm
 Particle Filter
 Bayesian Networks
 Basic definition, independence
 Variable elimination
 Sampling (rejection, importance)
- Learning
 BN parameters with complete data
 Search thru space of BN structures
 Expectation maximization