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Bayesian Networks - Learning

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller,
Stuart Russell, Andrew Moore & Luke Zettlemoyer

Bayes’ Net Semantics

Formally:
= A set of nodes, one per variable X @ @

= Adirected, acyclic graph

= A CPT for each node
= CPT = “Conditional Probability Table”
= Collection of distributions over X, one for
each combination of parents’ values P(X|A1... An)
P(Xlay...an)

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(z1,22,...2n) = || P(x;|parents(X;))
i=1
= This lets us reconstruct any entry of the full joint
= Not every BN can represent every joint distribution

= The topology enforces certain independence assumptions
= Compare to the exact decomposition according to the chain rule!

Example: Alarm Network
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Example: Car Diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray ) ensure sparse structure, reduce pammeters
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P(B | J=true, M=true)

Earthquake Burglary

P(lim) = a 2 P(bjm.e.a)
e,a




5/25/2012

Variable Elimination
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Repeated computations & Dynamic Programming

8

MCMC with Gibbs Sampling The Origin of Bayes Nets

= Fix the values of observed variables
= Set the values of all non-observed variables randomly

= Perform a random walk through the space of complete
variable assignments. On each move:
1. Pick a variable X
2. Calculate Pr(X=true | Markov blanket)
3. Set X to true with that probability

= Repeat many times. Frequency with which any variable
X is true is it's posterior probability.

= Converges to true posterior when frequencies stop
changing significantly
= stable distribution, mixing
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Parameter Estimation and Bayesian
Networks

= Learning Parameters for a Bayesian Network )

= Fully observable
= Maximum Likelihood (ML)

i
= Maximum A Posteriori (MAP) @

= Bayesian

= Hidden variables (EM algorithm)

= Learning Structure of Bayesian Networks

Learning Topics
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We have:
- Bayes Net structure and observations
- We need: Bayes Net parameters
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Parameter Estimation and Bayesian
Networks
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Parameter Estimation and Bayesian
Networks

Parameter Estimation and Bayesian
Networks
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Coin Flip
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Which coin will | use?

P(C)=1/3 P(C,)=1/3  P(C,)=1/3

Prior: Probability of a hypothesis
before we make any observations

Coin Flip
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Which coin will | use?

P(C)=1/3  P(C,)=1/3 P(C,) = 1/3

Uniform Prior: All hypothesis are equally likely
before we make any observations

Experiment 1. Heads

Which coin did | use?
P(C)H)=7?  P(C,JlH) =7 P(CyH) =7
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Experiment 1. Heads

Which coin did | use?
P(C,|H) = 0.066P(C,|H) = 0.333 P(C,|H)=0.6

| Posterior: Probability of a hypothesis given data I
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P(HIC)=0.1 P(H|C,)=05 P(H|C,)=0.9
P(C)=1/3 P(C)=1/3 P(C,)=1/3

Terminology

=Prior:

= Probability of a hypothesis before we see any data
=Uniform Prior:

= A prior that makes all hypothesis equally likely
=Posterior:

= Probability of a hypothesis after we saw some data
sLikelihood:

Probability of data given hypothesis

Experiment 2: Tails

Now, Which coin did | use?
P(Cl|HT) =? P(C2|HT) =? P(C3|HT) =?

P(C1|HT) = aP(HTIC)HG) = aP(HIC)P(TICL G}

C, C, C,
= P =

P(HIC)=0.1 P(H|C,)=05 P(H|C,)=0.9
P(C)=1/3 P(C,) = 1/3 P(C) = 1/3

Experiment 2: Tails

Now, Which coin did | use?
P(C,|HT) = 0.21P(C,|HT) = 0.58 P(C,|HT) = 0.21

P(CY|HT) = aP(HT|C1)H{G) = aP(HIC)P(TICL) G

C, C, G,
= P =

P(H|IC,)=0.1 P(H|IC,) =05 P(HIC,)=0.9
P(C)=1/3 P(C)=1/3 P(C) = 1/3

Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C,|HT) = 0.58 P(C,|HT) = 0.21
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PHIC,)=0.1 [P(HIC,)=05| P(HIC,)=0.9
Pc)=13 | Pc)=13 P(C)=1/3

Your Estimate?

What is the probability of heads after two experiments?

Most likely coin: Best estimate for P(H)
/f-"*,
C, (uat) P(H|C,) =05
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P(H{C:j =01 P(H|IC,)=05 P(H|C)=0.9

P(C)=1/3 P(C)=1/3 P(C.) = 1/3
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Your Estimate?

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

Using Prior Knowledge

= Should we always use a Uniform Prior ?

Most likely coin: Best estimate for P(H) * Background knowledge:
fﬂh Heads => we have to buy Dan chocolate
G, a‘?' P(HIC,) = 0.5 Dan likes chocolate...
e => Dan is more likely to use a coin biased in his favor
CZ
f‘m Cl Cz Cs
4 i\ y ( :_ | Waas)
P(HIC,) =05 b & 4
P(C) =1/3 P(H|C)=0.1 P(H|C,)=0.5 P(H|C,)=0.9

Using Prior Knowledge Experiment 1. Heads

. . Which coin did | use?
We can encode it in the prior:
P(CJH)=? P(CJH)=?  P(C/H)="?
P(C)=005 P(C,)=025 P(C)=0.70 P(CLI) = aP(HIC,)P(C)
C, C, C, C, C, c,
PHIC)=0.1 P(H|C,)=05 P(H|C,)=0.9 P(H|C)=0.1 P(H|C,)=05 P(H|C,)=0.9

[P(C)=0.05 P(C)=025 _P(C,)=0.70 |

Experiment 1. Heads
Which coin did | use?

Experiment 2: Tails

. - o
P(C,|H) = 0.006 P(C,|H) = 0.165 P(C,|H) = 0.829 Which coin did | use*
Compare with ML posterior after Exp 1: P(C,HT) =2 P(C,HT)=? = P(C,HT) =7
P(C,|H) = 0.066 P(C,|H) = 0.333 P(C.|H) = 0.600
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P(C)=0.05 P(C)=0.25 P(C)=0.70
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Experiment 2: Tails Experiment 2: Tails
Which coin did | use? Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485 P(C,|HT) =0.035 P(C,|HT)=0.481 P(C,|HT) = 0.485

P(C1|BT) = aP(ET|C1)P{Cy) = oP(B|C}P(T|C1) P{C1}
Cl C2 C3 Cl C? C3
QL & WY Q. & &3
P(HIC)=0.1 P(H|C,)=05 P(H|C,)=0.9 P(H|C)=0.1 PMH|C,)=05 [|P(HI|C,)=0.9
P(C)=005 P(C)=0.25 P(C)=0.70 P(C)=0.05 P(C)=025 | P(C)=0.70

. Your Estimate?
Your Estimate? . — ;
Maximum A Posteriori (MAP) Estimate:
What is the probability of heads after two experiments? The best hypothesis that fits observed data
assuming a non-uniform prior
e I'keLX coin: et ssiirEie for P Most likely coin: Best estimate for P(H)
C: & Al =0 c. (& P(HIC,) = 0.9
¢ © C, C,
o =, ™,
',/4 ({' Nt o Nt o
L\ \a¥ S S
P(H|C)=0.1 P(H|C,)=05 P(HIC,)=0.9 P(H|C,) = 0.9
P(C,)=0.05 P(C,)=0.25 P(C,)=0.70 P(C.) = 0.70

Did We Do The Right Thing? Did We Do The Right Thing?
P(C,|HT) =0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485
C, and C, are almost
equally likely
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P(HIC,)=0.1 P(H|C,)=0.5 P(H|C,) =0.9 P(HIC,)=0.1 P(H|C,)=0.5 P(H|C,)=0.9




A Better Estimate

3
Recall: P(H) =3 P{H|G)P(C:} = 0.680

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,/HT)=0.485

C

Y

C

C3
P(H|C,)=0.1 P(H|C,)=05 P(HIC,)=0.9
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Bayesian Estimate

Bayesian Estimate: Minimizes prediction error,
given data assuming an arbitrary prior

a
P{H) =Y P(H|C)P(G:) = 0.680
Sl

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

Cl CZ C3
P(H|C,)=0.1 P(H|C)) =05 P(HIC,)=0.9

Comparison
After more experiments: HTHHHHHHHHH

ML (Maximum Likelihood):
P(H)=0.5
after 10 experiments: P(H) = 0.9
MAP (Maximum A Posteriori):

P(H) = 0.9

after 10 experiments: P(H) = 0.9
Bayesian:

P(H) = 0.68

after 10 experiments: P(H) = 0.9

Easy to compute Summary
Prior Hypothesis

Maximum Likelihood Uniform The most likely
Estimate
Maximum A Any The most likely
Posteriori Estimate,
Weighted
Bayesian Estimate Any combination

Still easy to compute
Incorporates prior
knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute

Bayesian Learning

- Prior
Use Bayes rule: Data Likelihood ]
Ve

Posterior P(Y[X) = 7P(X [Y) P(Y)

; P(X)
@/ \ Normalization

Or equivalently: P(Y | X) « P(X | Y) P(Y)

Parameter Estimation and Bayesian
Networks

Now compute
either MAP or
Bayesian estimate

i

P(B) = fk + data =




What Prior to Use?

= Prev, you knew: it was one of only three coins
& S G
W - S
= Now more complicated...
The following are two common priors
= Binary variable Beta
= Posterior distribution is binomial
= Easy to compute posterior

= Discrete variable Dirichlet
= Posterior distribution is multinomial
= Easy to compute posterior

© Dnjel 5. Weld
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Beta Distribution
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Beta Distribution

= Example: Flip coin with Beta distribution
as prior over p [prob(heads)]
1. Parameterized by two positive numbers: a, b
2. Mode of distribution (E[p]) is a/(a+b)
3. Specify our prior belief for p = a/(a+b)
4. Specify confidence in this belief with high
initial values for a and b
= Updating our prior belief based on data
= incrementing a for every heads outcome
= incrementing b for every tails outcome

One Prior: Beta Distribution

B(x) = I'(a + b)

2 =TT ® —a

0 <z <1andab>010

Here I'(y) = fum ¥ le~%dx

For any positive integer y, T'(y) = (y-1)!

Parameter Estimation and Bayesian
Networks

Prior B -B
P(B|data) = Beta(1,4) “+ data” = (3.7)

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

Parameter Estimation and Bayesian

Networks
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Parameter Estimation and Bayesian

Networks
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Prior

P(A|-E,B) = Beta(2,3)
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Parameter Estimation and Bayesian

Networks
&
@ -
Prior

P(A|-E,B) = Beta(2,3) + data= (3.4)

Bayesian Learning

- Prior
Use Bayes rule: Data Likelihood 1
«
Posterior P(Y | X) = P(X]Y) P(Y)
SN
T Normalization

Or equivalently: P(Y | X) o« P(X | Y) P(Y)




