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B i N t k L iBayesian Networks - Learning

Dan Weld
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Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0 95

Only 10 params

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99

Example: Car Diagnosis
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P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a
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Variable Elimination
P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)

e              a

Repeated computations  Dynamic Programming

P(B|C) 

8

MCMC with Gibbs Sampling
 Fix the values of observed variables

 Set the values of all non-observed variables randomly

 Perform a random walk through the space of complete 
variable assignments.  On each move:

1. Pick a variable X

9

1. Pick a variable X

2. Calculate Pr(X=true | Markov blanket)

3. Set X to true with that probability

 Repeat many times.  Frequency with which any variable 
X is true is it’s posterior probability.

 Converges to true posterior when frequencies stop 
changing significantly

 stable distribution, mixing

The Origin of Bayes Nets

Earthquake Burglary
Pr(B=t) Pr(B=f)

0.05    0.95

Pr(A|E,B)
e b    0 9 (0 1)
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Alarm

Nbr2CallsNbr1Calls

e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio

Learning Topics

 Learning Parameters for a Bayesian Network
 Fully observable
 Maximum Likelihood (ML)

© Daniel S. Weld

 Maximum A Posteriori (MAP)

 Bayesian

 Hidden variables (EM algorithm)

 Learning Structure of Bayesian Networks

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...We have: 

- Bayes Net structure and observations
- We need: Bayes Net parameters



5/25/2012

3

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?

P(¬B) = 1- P(B) 

= 0.4

= 0.6

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Parameter Estimation and Bayesian 
Networks

Coin

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1)=0.1 

C1 C2 C3

P(C1)=1/3 P(C2) = 1/3 P(C3) = 1/3
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data

Terminology

Prior: 
 Probability of a hypothesis before we see any data

Uniform Prior: 
 A prior that makes all hypothesis equally likelyA prior that makes all hypothesis equally likely

Posterior: 
 Probability of a hypothesis after we saw some data

Likelihood: 
 Probability of data given hypothesis

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 5

Most likely coin: 

C

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(H|C2) = 0.5C2
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Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C ) = 0 5C

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

P(H|C2) = 0.5

C2

P(C2) = 1/3

P(H|C2) = 0.5C2

Using Prior Knowledge

 Should we always use a Uniform Prior ?

 Background knowledge:
Heads => we have to buy Dan chocolate

D lik h l tDan likes chocolate…

=> Dan is more likely to use a coin biased in his favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Using Prior Knowledge

We can encode it in the prior:

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006P(C2|H) = 0.165 P(C3|H) = 0.829

P(C |H) 0 066P(C |H) 0 333 P(C |H) 0 600
Compare with ML posterior after Exp 1:

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.600

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70
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Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT)=0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 9C

Most likely coin: 

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(H|C3) = 0.9C3

Your Estimate?

Most likely coin: Best estimate for P(H) 

Maximum A Posteriori (MAP) Estimate: 
The best hypothesis that fits observed data 

assuming a non-uniform prior

P(H|C3) = 0.9C3

P(H|C3) = 0.9

C3

P(C3) = 0.70

Did We Do The Right Thing?

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

Did We Do The Right Thing?

P(C1|HT) =0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

C2 and C3 are almost 
equally likely

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

equally likely
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A Better Estimate

Recall: = 0.680

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

Bayesian Estimate

= 0.680

Bayesian Estimate: Minimizes prediction error, 
given data assuming an arbitrary prior

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

Comparison 
After more experiments: HTHHHHHHHHH

ML (Maximum Likelihood):
P(H) = 0.5
after 10 experiments: P(H) = 0.9

MAP (Maximum A Posteriori):( )
P(H) = 0.9
after 10 experiments: P(H) = 0.9

Bayesian:
P(H) = 0.68
after 10 experiments: P(H) = 0.9

Summary
Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Uniform The most likely

Any The most likely

Any Weighted 

Easy to compute

Bayesian Estimate Any g
combination

Still easy to compute
Incorporates prior 
knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute

Bayesian Learning

Use Bayes rule:
Prior

Data Likelihood

Posterior P(Y | X)  =  P(X |Y) P(Y)
P(X)

Or equivalently:  P(Y | X)  P(X | Y) P(Y)

Normalization

P(X)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?
-5
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Prior

+ data = 
-2
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0 0.2 0.4 0.6 0.8 1

Now compute
either MAP or

Bayesian estimate



5/25/2012

8

What Prior to Use?
 Prev, you knew: it was one of only three coins

 Now more complicated…

 The following are two common priors

 Binary variable Beta
 Posterior distribution is binomial

 Easy to compute posterior

 Discrete variable Dirichlet
 Posterior distribution is multinomial

 Easy to compute posterior © Daniel S. Weld43

Beta Distribution

Beta Distribution

 Example: Flip coin with Beta distribution 
as prior over p [prob(heads)]
1. Parameterized by two positive numbers: a, b

2 Mode of distribution (E[p]) is a/(a+b)2. Mode of distribution (E[p]) is a/(a+b)

3. Specify our prior belief for p = a/(a+b)

4. Specify confidence in this belief with high 
initial values for a and b

 Updating our prior belief based on data
 incrementing a for every heads outcome

 incrementing b for every tails outcome

S ft h h d t f fli

One Prior: Beta Distribution

a,b

For any positive integer y, (y) = (y-1)!

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B|data) = ?

Prior
“+ data” = Beta(1,4) (3,7) .3

B ¬B

.7

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

Beta(2,3)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

+ data= Beta(2,3) (3,4)

Bayesian Learning

Use Bayes rule:
Prior

Data Likelihood

Posterior P(Y | X)  =  P(X |Y) P(Y)
P(X)

Or equivalently:  P(Y | X)  P(X | Y) P(Y)

Normalization

P(X)


