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B i N t k I fBayesian Networks - Inference

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, 
Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Probabilistic Models - Outline

 Bayesian Networks (BNs)

 Independence

 Efficient Inference in BNsEfficient Inference in BNs
 Variable Elimination

 Direct Sampling

 Markov Chain Monte Carlo (MCMC)

 Learning 

Bayes’ Nets: Big Picture

 Problems with using full joint distribution :
 Unless very few variables, the joint is WAY too big
 Unless very few variables, hard to learn (estimate empirically)

 Bayesian networks: a technique for describing complex joint Bayesian networks: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 A kind of “graphical model”
 We describe how random variables interact, locally 
 Local interactions chain together to give global distribution

Bayes’ Net Semantics

Formally:

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for 

each combination of parents’ values

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0 95

10 params vs 31

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99

Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!
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Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?

 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example

 Example:

X Y Z

 Question: are X and Z independent?
 Answer: no.  

 Example: low pressure causes rain, which causes traffic.
 Knowledge about X may change belief in Z, 
 Knowledge about Z may change belief in X (via Y)
 Addendum: they could be independent: how?

Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple

Active Triples Inactive Triples

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)
 Common cause A  B  C 

where B is unobserved
 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Example

 Variables:
 R: Raining

 W: Wet 

 P: Plants growing

 T: Traffic bad

R

Active Triples

 D: Roof drips

 S: I’m sad

 Questions:
 W  D 

W

T

S

D

P
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Example

 Variables:
 R: Raining

 W: Wet 

 P: Plants growing

 T: Traffic bad

R

Active Triples

 D: Roof drips

 S: I’m sad
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 W  D 

 P  D | R, S 
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P
No

No

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 12

MB(X) = Par(X)  Childs(X)  Par(Childs(X))
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Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 13

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Inference in BNs

The graphical independence representation

 yields efficient inference schemes

We generally want to compute 

Marginal probability: Pr(Z),g p y ( ),

Pr(Z|E) where E is (conjunctive) evidence

 Z: query variable(s), 

 E: evidence variable(s)

 everything else: hidden variable

Computations organized by network topology
© D. Weld and D. Fox 30

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m|a)
e a

Variable Elimination
P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)

e        a

Repeated computations  Dynamic Programming

Approximate Inference in Bayes Nets
Sampling based methods

(Based on slides by Jack Breese 
and Daphne Koller)

44
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Bayes Net is a generative model
 We can easily generate samples from the 

distribution represented by the Bayes net
 Generate one variable at a time in topological order

Use the samples to compute marginal probabilities, say P(c)

P(B|C) 

46

P(B|C) 

47

P(B|C) 

48

P(B|C) 

49

P(B|C) 

50
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P(B|C) 
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P(B|C) 

52

P(B|C) 
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P(B|C) 

54

P(B|C) 

55

P(B|C) 

56
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P(B|C) 
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P(B|C) 

58

P(B|C) 
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P(B|C) 

60

P(B|C) 

61

Rejection Sampling

 Sample from the prior
 reject if do not match the evidence

R t i t t t i ti t Returns consistent posterior estimates

 Hopelessly expensive if P(e) is small
 P(e) drops off exponentially with no. of evidence 

vars

62
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Likelihood Weighting

 Idea: 
 fix evidence variables

 sample only non-evidence variables

 weight each sample by the likelihood of weight each sample by the likelihood of 
evidence

63

P(B|C) 

64

P(B|C) 

65

P(B|C) 

66

P(B|C) 

67

P(B|C) 

68
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P(B|C) 

69

P(B|C) 

70

P(B|C) 

71

P(B|C) 

72

P(B|C) 

73

Likelihood Weighting
 Sampling probability: S(z,e) =  
 Neither prior nor posterior

 Wt for a sample <z,e>:

 Weighted Sampling probability S(z,e)w(z,e)


i

))Parents(Z|P(z ii


i

ii )Parents(E|P(e  e) w(z,

=

= P(z,e)

  returns consistent estimates

 performance degrades w/ many evidence vars
 but a few samples have nearly all the total weight

 late occuring evidence vars do not guide sample generation 


i

ii )Parents(E|P(e
i

))Parents(Z|P(z ii

74
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MCMC with Gibbs Sampling
 Fix the values of observed variables

 Set the values of all non-observed variables randomly

 Perform a random walk through the space of complete 
variable assignments.  On each move:

1. Pick a variable X

75

1. Pick a variable X

2. Calculate Pr(X=true | all other variables)

3. Set X to true with that probability

 Repeat many times.  Frequency with which any variable 
X is true is it’s posterior probability.

 Converges to true posterior when frequencies stop 
changing significantly

 stable distribution, mixing

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 76

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Markov Blanket Sampling
 How to calculate Pr(X=true | all other variables) ?

 Recall: a variable is independent of all others given it’s Markov 
Blanket

 parents

 children

th t f hild

77
( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

 other parents of children

 So problem becomes calculating Pr(X=true | MB(X))
 We solve this sub-problem exactly

 Fortunately, it is easy to solve

Example

( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

( , , , )
( | , , )

( , , )

P X A B C
P X A B C

P A B C


A

78

( )

( , , )

( ) ( )
( | ) ( | , )

( , , )

( | )

( | ) ( ) ( | , )

( | , )

P A B

P A P X A P C P B

C

P A P C
P X A P B X C

P A B C

P X

X

A P B X C

C





 
  
 



X

B

C

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

79

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1
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Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: h, b
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Heart
disease

Lung
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Shortness
of breath
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 Evidence: s, b

 Randomly set: h, g

 Sample H using P(H|s,g,b)
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  Suppose result is ~h
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Suppose result is ~h

Sample G using P(G|s,~h,b)
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Example
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Gibbs MCMC Summary

 Advantages:

 No samples are discarded

N bl ith l f l i ht

P(X|E) =
number of samples with X=x 

total number of samples

 No problem with samples of low weight 

 Can be implemented very efficiently
 10K samples @ second

 Disadvantages:

 Can get stuck if relationship between vars is deterministic

 Many variations devised to make MCMC more robust

88

Other inference methods

 Exact inference
 Junction tree

 Approximate inference Approximate inference
 Belief Propagation

 Variational Methods

89


