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Outline

= Probability review
= Random Variables and Events
= Joint / Marginal / Conditional Distributions
= Product Rule, Chain Rule, Bayes’ Rule
= Probabilistic Inference

= Probabilistic sequence models (and inference)
= Markov Chains
= Hidden Markov Models
= Particle Filters

Probability Review

= Probability
= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
= Product Rule, Chain Rule, Bayes’ Rule
= Inference

= You'll need all this stuff A LOT for the next few
weeks, so make sure you go over it now!

Planning in Belief Space

Pr(heat | s,) = 1.0
Pr(heat | s,,) = 0.2

100% 0%

17% 83%

Inference in Ghostbusters

= Aghostis in the grid
somewhere
= Sensor readings tell
how close a square
is to the ghost
= On the ghost: red
= 1 or 2 away: orange
= 3or4 away: yellow
= 5+ away: green
= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty
= R=lsitraining?
= D =How long will it take to drive to work?
= L=WhereamI?

= We denote random variables with capital letters

= Random variables have domains
= Rin {true, false}
= Din[o, 1)
= Lin possible locations, maybe {(0,0), (0,1), ...}
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Joint Distributions

* Ajoint distribution over a set of random variables: x, X, ... X,
specifies a real number for each outcome (ie each assignment):

Events

P(X1=I1,X2=."L’2,...Xn=zn) P(T,W)
P(z1,22,...2n) T wlP
. Must obey: hot | sun | 0.4
ust obey: P(zy,z,...2n) >0 hot | rain | 0.1
cold | sun | 0.2
> Plyag..an)=1 cold | rain | 03

(x1,22,...wn)

= Size of distribution if n variables with domain sizes d?

= Aprobabilistic model is a joint distribution over variables of interest
= For all but the smallest distributions, impractical to write out

= An outcome is a joint assignment for all the variables
(z1,%2,...2n)

= Aneventis a set E of outcomes

P(Ey= % P(a1...an) r | w P
(¢1..an)EE hot sun 0.4
L I hot rain 0.1
= From a joint distribution, we can cold | sun 02
calculate the probability of any event -
cold rain 0.3

= Probability that it's hot AND sunny?
= Probability that it's hot?
= Probability that it's hot OR sunny?

Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding
P(X1 =) =) P(X1=21,Xp =)
2

P(T)
P(T,W) T P
T W 5 > hot 0.5
hot | sun | o4 PE)=YP(t,u) cold | 05
hot rain 0.1 w P(W)

cold | sun 0.2 ————— w p
cold | rain 03[ Pl{w)= E P, w) sun 0.6
]

rain 0.4

Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution
[ P(WI|T = hot) P(T, W)
w P T w P
— sun 0.8 hot | sun 0.4
% rain 0.2 hot | rain 0.1
Z P(W|T = cold) cold | sun 0.2
A cold rain 0.3
W P
0.4
p— 06 P(z1|z) = Pley,w2)
rain . C1122) =
- P(x2)

Normalization Trick

= Atrick to get a whole conditional distribution at once:
= Select the joint probabilities matching the evidence
= Normalize the selection (make it sum to one)

P(Ta VV) Select Normalize

T W P |—> pP(r,r) = P(T|r)

hot sun 0.4 T R P T P

hot rain 0.1 | hot | rain | 0.1]| hot | 0.25

cold sun 0.2| | cold| rain | 0.3|| cold | 0.75

cold rain 0.3

= Why does this work? Sum of selection is P(evidence)! (P(r), here)

P(zy,22) _  P(xy,22)

Plele2) = =y = 5o Pleviaa)

Probabilistic Inference

= Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) = 0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated




Inference by Enumeration
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Inference by Enumeration

- S T W

summer | hot | sun

0.30

summer| hot | rain

0.05

= P(sun | winter)?
summer | cold | sun

0.10

summer | cold | rain

0.05

winter hot | sun

0.10

winter hot | rain

0.05

winter | cold | sun

0.15

winter | cold | rain

0.20

= P(sun)? S T W P
summer | hot | sun | 0.30
summer | hot | rain | 0.05
summer | cold | sun | 0.10
summer | cold | rain | 0.05
winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20

Inference by Enumeration

" S T W P
summer | hot | sun | 0.30

. summer | hot | rain | 0.05
summer | cold | sun | 0.10
summer | cold | rain | 0.05
winter | hot | sun | 0.10

* P(sun | winter, hot)? winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20

Inference by Enumeration

= General case:

= Query* variable: Q
= Hidden variables:  H;...H,

= Evidence variables: Ep...Ep=ej...¢e; } X, Xg, ..

All variables

= Wewant: P(Qley...e.)

= First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:
P(Qey...ep) = 5 OP(Qhy.heerey)

hyoir
X1, Xo,... Xy
= Finally, normalize the remaining entries to conditionalize
= Obvious problems:
= Worst-case time complexity O(d")
= Space complexity O(d") to store the joint distribution

Xn

Supremacy of the Joint Distribution

The Product Rule

= Sometimes have conditional distributions but want the joint

PGly) = P@&Y (== Pa,y) = P(aly)P(y)

= P(sun)? S T W P
summer | hot | sun | 0.30

. P(sun | winter)? summer | hot | rain | 0.05
summer | cold | sun | 0.10
summer | cold | rain | 0.05
winter | hot | sun | 0.10

= P(sun | winter, hot)? winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20

P(y)
= Example: P(DIW) P(D, W)
D W P
P(W) b W|P wet | sun | 0.08
R | p || et sun) 01 ) dry | sun | 0.72
sun | 0.8 dry su.n 0.9 /<f> wet | rain | 0.14
rain 1 0.2 wet | rain| 0.7 N dry | rain | 0.06
dry | rain| 0.3




The Product Rule

= Sometimes have conditional distributions but want the joint

P<z|y>=P,§fj)’) ¢ Pla,y) = Paly)P@)

= Example:

P(D,W)

P(W) P(DIW)
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The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(zy,22,23) = P(x1) P(22|e1) P(as|ey, ©2)

P(xy,@,...2n) = [[ P(zily ... 2i-1)
i

Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(z|ly) P(y) = P(ylz) P(x) That's my rule!

= Dividing, we get: =

P
Plaly) = )
P(y)
= Why is this at all helpful?
= Lets us build a conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later

P(z)

= In the running for most important Al equation!

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(Effect|Cause)P(Cause)

P(Cause|Effect) =

P(Effect)
= Example:
* mis meningitis, s is stiff neck ~ P(s|m) = 0.8 £
xample
P(m) =0.0001 - gyens
P(s) =0.1

P P 0.8 x 0.0001

P(m|s) = (elm)P(m) _ 0.8 = 0.0008

P(s) 0.1
= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why?

Ghostbusters, Revisited

= Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let's say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R = yellow | G=(1,1)) = 0.1

= We can calculate the posterior
distribution P(GJr) over ghost locations
given a reading using Bayes’ rule:

P(g|r) o< P(r|g)P(g)

Markov Models (Markov Chains)

= A Markov model is:
= a MDP with no actions (and no rewards)
= a chain-structured Bayesian Network (BN)

........ .@

= A Markov model includes:
= Random variables X for all time steps t (the state)

= Parameters: called transition probabilities or
dynamics, specify how the state evolves over time
(also, initial probs)

P(X1) and  P{X]X, 1}
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Markov Models (Markov Chains)

........ .@

= A Markov model defines
= a joint probability distribution:

P(Xy,...,X,) = P(X1) ﬁP(XAXt_I)
=2

= One common inference problem:
= Compute marginals P(X)) for all time steps t

Conditional Independence

= Basic conditional independence:
= Past and future independent of the present
= Each time step only depends on the previous
= This is called the (first order) Markov property

= Note that the chain is just a (growing) BN

= We can always use generic BN reasoning on it if we
truncate the chain at a fixed length

Example: Markov Chain

= Weather:

0.9
= States: X = {rain, sun} 01
= Transitions: @
0.9 0.1 Thisis a
: conditional
distribution

= [nitial distribution: 1.0 sun
= What's the probability distribution after one step?
P(X5 =sun) = +
P{X> = sun|X; = rain}P(X1 = rain)

+0.1-00=0.9

Markov Chain Inference

= Question: probability of being in state x at time t?
= Slow answer:

= Enumerate all sequences of length t which end in s

= Add up their probabilities

P(X; = sun) = Z P(xq,...24_1,sun)
Ty.dypo]

P(X1 = sun) P(Xp = sun|X; = sun)P(X3 = sun|Xp = sun) P(X4 = sun|X3 = sun)

P(X1 = sun) P(X5 = rain| X, = sun) P(X3 = sun|X, = rain) P(X4 = sun|X3 = sun)

Mini-Forward Algorithm

= Question: What's P(X) on some day t?
= We don't need to enumerate every sequence!

o [on
rain - rain rain rain

P(a) = 3 Plarla-1)P(r 1)

Tp—1

P(x1) = known \

Forward simulation

Example

= From initial observation of sun

< 0.0 > < 0.1 > < 0.18 > > < 0.5 >
P(X) P(X,) P(X3) P(X)

= From initial observation of rain

(V) (as) (ooz) = {53)

P(X,) P(Xy) P(X3) P(X)




