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CSE 473: Artificial Intelligence
Spring 2012

Reasoning about Uncertainty 

&&

Hidden Markov Models

Daniel Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer
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Outline

 Probability review
 Random Variables and Events

 Joint / Marginal / Conditional Distributions

 Product Rule, Chain Rule, Bayes’ Rule

 Probabilistic Inference

 Probabilistic sequence models (and inference)

 Markov Chains

 Hidden Markov Models

 Particle Filters

Probability Review

 Probability
 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 You’ll need all this stuff A LOT for the next few 
weeks, so make sure you go over it now!

Planning in Belief Space

sign sign

100% 0%
heat

Pr(heat | seb) = 1.0
Pr(heat | swb) = 0.2

Observe:

sign sign

50% 50%

%

S

sign sign

17% 83%

heat

Inference in Ghostbusters

 A ghost is in the grid 
somewhere

 Sensor readings tell 
how close a square 
is to the ghostis to the ghost
 On the ghost: red

 1 or 2 away: orange

 3 or 4 away: yellow

 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

 Sensors are noisy, but we know P(Color | Distance)

Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty
 R = Is it raining?
 D = How long will it take to drive to work?
 L = Where am I?

 We denote random variables with capital letters

 Random variables have domains
 R in {true, false}
 D in [0, 1)
 L in possible locations, maybe {(0,0), (0,1), …}
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Joint Distributions

 A joint distribution over a set of random variables:
specifies a real number for each outcome (ie each assignment): 

T W P

 Size of distribution if n variables with domain sizes d?

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

 Must obey:

 A probabilistic model is a joint distribution over variables of interest
 For all but the smallest distributions, impractical to write out

Events

 An event is a set E of outcomes
T W P

h t 0 4

 An outcome is a joint assignment for all the variables

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

 From a joint distribution, we can 
calculate the probability of any event

 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

Marginal Distributions
 Marginal distributions are sub-tables which eliminate variables 

 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

Conditional Distributions

 Conditional distributions are probability distributions over 
some variables given fixed values of others

Conditional Distributions Joint Distribution

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Normalization Trick
 A trick to get a whole conditional distribution at once:

 Select the joint probabilities matching the evidence
 Normalize the selection (make it sum to one)

T W P

hot sun 0 4 T R P T P

Select Normalize

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T R P

hot rain 0.1

cold rain 0.3

T P

hot 0.25

cold 0.75

 Why does this work? Sum of selection is P(evidence)!  (P(r), here)

Probabilistic Inference

 Probabilistic inference: compute a desired probability from 
other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities 
 P(on time | no reported accidents) = 0.90

 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95

 P(on time | no accidents, 5 a.m., raining) = 0.80

 Observing new evidence causes beliefs to be updated



5/11/2012

3

Inference by Enumeration

 P(sun)? S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration

 P(sun)?

 P(sun | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration

 P(sun)?

 P(sun | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10

 P(sun | winter, hot)?

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables:

 We want:

All variables

 First select the entries consistent with the evidence First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn) 
 Space complexity O(dn) to store the joint distribution

Supremacy of the Joint Distribution

 P(sun)?

 P(sun | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10

 P(sun | winter, hot)?

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

The Product Rule

 Sometimes have conditional distributions but want the joint

 Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06

Example:



5/11/2012

4

The Product Rule

 Sometimes have conditional distributions but want the joint

 Example:Example:

DW

The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

That’s my rule!

 Why is this at all helpful?
 Lets us build a conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later

 In the running for most important AI equation!

Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:

 Note: posterior probability of meningitis still very small

 Note: you should still get stiff necks checked out!  Why?

Example
givens

 m is meningitis, s is stiff neck

Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform

 Sensor reading model: P(R | G)
 Given: we know what our sensors do

 R = reading color measured at (1,1)

 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

Markov Models (Markov Chains)

 A Markov model is:
 a MDP with no actions (and no rewards)

X2X1 X3 X4 XN

 a chain-structured Bayesian Network (BN)

X2X1 X3 X4

and

 A Markov model includes:
 Random variables Xt for all time steps t (the state)
 Parameters: called transition probabilities or 

dynamics, specify how the state evolves over time 
(also, initial probs)

XN
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Markov Models (Markov Chains)

 A Markov model defines
 a joint probability distribution:

X2X1 X3 X4 XN

 One common inference problem:
 Compute marginals P(Xt) for all time steps t

Conditional Independence

 Basic conditional independence:

X2X1 X3 X4

 Past and future independent of the present
 Each time step only depends on the previous
 This is called the (first order) Markov property

 Note that the chain is just a (growing) BN
 We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length

Example: Markov Chain

 Weather:
 States: X = {rain, sun}

 Transitions: rain sun

0.9

0.9

0.1

0.1
This is a 

diti l

 Initial distribution: 1.0 sun

 What’s the probability distribution after one step?

conditional 
distribution

Markov Chain Inference

 Question: probability of being in state x at time t?

 Slow answer:
 Enumerate all sequences of length t which end in s

 Add up their probabilitiesp p

…

Mini-Forward Algorithm

 Question: What’s P(X) on some day t?
 We don’t need to enumerate every sequence!

sun sun sun sun

rain rain rain rain

Forward simulation

Example

 From initial observation of sun

 From initial observation of rain

P(X1) P(X2) P(X3) P(X)

P(X1) P(X2) P(X3) P(X)


