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CSE 473: Artificial Intelligence
Spring 2012

Reasoning about Uncertainty 

&&

Hidden Markov Models

Daniel Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer

1

Outline

 Probability review
 Random Variables and Events

 Joint / Marginal / Conditional Distributions

 Product Rule, Chain Rule, Bayes’ Rule

 Probabilistic Inference

 Probabilistic sequence models (and inference)

 Markov Chains

 Hidden Markov Models

 Particle Filters

Probability Review

 Probability
 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 You’ll need all this stuff A LOT for the next few 
weeks, so make sure you go over it now!

Planning in Belief Space

sign sign

100% 0%
heat

Pr(heat | seb) = 1.0
Pr(heat | swb) = 0.2

Observe:

sign sign

50% 50%

%

S

sign sign

17% 83%

heat

Inference in Ghostbusters

 A ghost is in the grid 
somewhere

 Sensor readings tell 
how close a square 
is to the ghostis to the ghost
 On the ghost: red

 1 or 2 away: orange

 3 or 4 away: yellow

 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

 Sensors are noisy, but we know P(Color | Distance)

Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty
 R = Is it raining?
 D = How long will it take to drive to work?
 L = Where am I?

 We denote random variables with capital letters

 Random variables have domains
 R in {true, false}
 D in [0, 1)
 L in possible locations, maybe {(0,0), (0,1), …}
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Joint Distributions

 A joint distribution over a set of random variables:
specifies a real number for each outcome (ie each assignment): 

T W P

 Size of distribution if n variables with domain sizes d?

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

 Must obey:

 A probabilistic model is a joint distribution over variables of interest
 For all but the smallest distributions, impractical to write out

Events

 An event is a set E of outcomes
T W P

h t 0 4

 An outcome is a joint assignment for all the variables

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

 From a joint distribution, we can 
calculate the probability of any event

 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

Marginal Distributions
 Marginal distributions are sub-tables which eliminate variables 

 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

Conditional Distributions

 Conditional distributions are probability distributions over 
some variables given fixed values of others

Conditional Distributions Joint Distribution

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Normalization Trick
 A trick to get a whole conditional distribution at once:

 Select the joint probabilities matching the evidence
 Normalize the selection (make it sum to one)

T W P

hot sun 0 4 T R P T P

Select Normalize

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T R P

hot rain 0.1

cold rain 0.3

T P

hot 0.25

cold 0.75

 Why does this work? Sum of selection is P(evidence)!  (P(r), here)

Probabilistic Inference

 Probabilistic inference: compute a desired probability from 
other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities 
 P(on time | no reported accidents) = 0.90

 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95

 P(on time | no accidents, 5 a.m., raining) = 0.80

 Observing new evidence causes beliefs to be updated
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Inference by Enumeration

 P(sun)? S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration

 P(sun)?

 P(sun | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration

 P(sun)?

 P(sun | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10

 P(sun | winter, hot)?

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables:

 We want:

All variables

 First select the entries consistent with the evidence First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn) 
 Space complexity O(dn) to store the joint distribution

Supremacy of the Joint Distribution

 P(sun)?

 P(sun | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10

 P(sun | winter, hot)?

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

The Product Rule

 Sometimes have conditional distributions but want the joint

 Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06

Example:
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The Product Rule

 Sometimes have conditional distributions but want the joint

 Example:Example:

DW

The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

That’s my rule!

 Why is this at all helpful?
 Lets us build a conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later

 In the running for most important AI equation!

Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:

 Note: posterior probability of meningitis still very small

 Note: you should still get stiff necks checked out!  Why?

Example
givens

 m is meningitis, s is stiff neck

Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform

 Sensor reading model: P(R | G)
 Given: we know what our sensors do

 R = reading color measured at (1,1)

 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

Markov Models (Markov Chains)

 A Markov model is:
 a MDP with no actions (and no rewards)

X2X1 X3 X4 XN

 a chain-structured Bayesian Network (BN)

X2X1 X3 X4

and

 A Markov model includes:
 Random variables Xt for all time steps t (the state)
 Parameters: called transition probabilities or 

dynamics, specify how the state evolves over time 
(also, initial probs)

XN
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Markov Models (Markov Chains)

 A Markov model defines
 a joint probability distribution:

X2X1 X3 X4 XN

 One common inference problem:
 Compute marginals P(Xt) for all time steps t

Conditional Independence

 Basic conditional independence:

X2X1 X3 X4

 Past and future independent of the present
 Each time step only depends on the previous
 This is called the (first order) Markov property

 Note that the chain is just a (growing) BN
 We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length

Example: Markov Chain

 Weather:
 States: X = {rain, sun}

 Transitions: rain sun

0.9

0.9

0.1

0.1
This is a 

diti l

 Initial distribution: 1.0 sun

 What’s the probability distribution after one step?

conditional 
distribution

Markov Chain Inference

 Question: probability of being in state x at time t?

 Slow answer:
 Enumerate all sequences of length t which end in s

 Add up their probabilitiesp p

…

Mini-Forward Algorithm

 Question: What’s P(X) on some day t?
 We don’t need to enumerate every sequence!

sun sun sun sun

rain rain rain rain

Forward simulation

Example

 From initial observation of sun

 From initial observation of rain

P(X1) P(X2) P(X3) P(X)

P(X1) P(X2) P(X3) P(X)


